簡易檢索 / 詳目顯示

研究生: 張瑋真
Wei-Chen Chang
論文名稱: 表面電漿共振原理應用於氣液相化學偵測器之研製
A Chemical Detector Based on Localized Surface Plasmon Resonance of Nanoparticles in Gas and Liquid Phases
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 表面電漿共振揮發性有機氣體奈米金粒子
英文關鍵詞: Localized surface plasmon resonance, Volatile organic compounds, Nanoparticle
論文種類: 學術論文
相關次數: 點閱:148下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展出新型態氣相與液相感測器,其偵測原理是利用奈米金粒子產生的表面電漿共振現象,在中空光纖內層表面修飾3-aminopropyltrimethoxysilane (APTMS),奈米金粒子自組裝於修飾後的中空光纖內層,將此奈米金粒子中空光纖感測器串聯氣相層析儀,當有機揮發氣體 (VOCs) 經層析分離管柱沖提出來到達奈米金粒子中空光纖感測器,中空光纖內的奈米金粒子吸附有機揮發氣體,造成綠光 (λ=520 nm) 的光吸收度變化。此感測器成功檢測 8 種混合性有機揮發氣體,其結果顯示具有良好的靈敏度、穩定性,其線性關係 ( R2≧0.99 ) 、再現性以及偵測極限範圍 20.0 ~ 180.0 ng,奈米金平板式液相感測器部分,將奈米金粒子自組裝於玻璃平板上,並在其中填滿表面修飾過奈米金粒子的玻璃微粒,將奈米金平板式液相感測器串聯流動注入偵測裝置及液相層析儀,成功的偵測常見醣類。

    In this research, we developed two novel devices to be used as gas and liquid chromatographic detectors. The detection mechanism of gas detector was based on the localized surface plasmon resonance of gold nanoparticles that were self-assemble on the inner surface of optical hollow fiber modified with 3-aminopropyltrimethoxysilane (APTMS). A green light emitting diode was used as a light source and the light (=520 nm) transmitted through the glass wall of optical hollow fiber. Once VOCs were eluted from the GC column to the optical hollow fiber, the VOCs were absorbed on the Au-nanoparticles, the light intensity reduced as the absorbance of LSPR band increased. A mixture of eight VOCs was detected by the LSPR-GC detector. The estimated limit of detection was ranged from 20.0 to 180.0 ng and the responses were rapid, reversible, linear (R2≧0.99). The device for liquid chromatographic detector used a micro fluidic channel that assembled between glass substrates. The fluidic channel was filled with glass beads that were modified with Au-nanoparticle monolayer. The liquid phase detector was tested on both flow injection system and high performance liquid chromatographic system. The detection signal of several sugar compounds was successfully obtained.

    中文摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 x 1. 第一章 緒論 1 1.1 前言 1 1.2 奈米材料簡介 3 1.3 奈米材料的基本物理性質 4 1.3.1 小尺寸效應 4 1.3.2 表面效應 5 1.3.3 量子尺寸效應 6 1.3.4 奈米金屬粒子之光學特性 7 1.4 表面電漿共振原理 11 1.4.1 漸逝波原理 11 1.4.2 表面電漿波原理 15 1.4.3 表面電漿共振現象 17 1.5 表面電漿共振應用 19 2. 第二章 實驗方法與步驟 24 2.1 實驗藥品與儀器設備 24 2.1.1 實驗藥品 24 2.1.2 實驗器材 26 2.1.3 儀器設備 28 2.2 奈米金粒子合成方法 29 2.3 奈米金粒子用於玻璃表面改質之方法 31 2.3.1 玻璃片清洗 31 2.3.2 奈米金粒子自組裝於玻璃片之步驟 31 2.4 奈米金粒子中空光纖感測器製作步驟 32 2.4.1 中空光纖清洗 32 2.4.2 中空光纖外層修飾銀鏡薄膜 32 2.4.3 中空光纖內層修飾奈米金粒子 34 2.4.4 奈米金粒子中空光纖感測器組裝步驟 36 2.4.5 自製溫度調節裝置組裝步驟 39 2.5 奈米金平板式液相感測器製作步驟 40 2.5.1 玻璃平板與玻璃微粒清洗 40 2.5.2 奈米金粒子自組裝於玻璃微粒 40 2.5.3 奈米金平板式液相感測器組裝步驟 41 2.6 感測器訊號處理 45 2.7 氣體樣品配置 46 2.8 感測系統架設 47 3. 第三章 結果與討論 49 3.1 奈米金粒子光譜圖與粒徑分析 49 3.1.1 奈米金粒子溶液之分析 49 3.1.2 奈米金粒子自組裝於玻璃表面之分析 51 3.1.3 奈米金粒子感測有機氣體之機制 53 3.2 奈米金粒子中空光纖長度之討論 55 3.3 奈米金粒子中空光纖外側包覆層之討論 59 3.4 奈米金粒子中空光纖形狀之討論 62 3.5 奈米金粒子中空光纖溫度之討論 67 3.6 奈米金粒子中空光纖偵測器再現性檢測 70 3.7 奈米金粒子中空光纖層析圖譜及校正曲線 71 3.8 奈米金平板式液相感測器應用於流動注入偵測裝置 75 3.8.1 奈米金平板式流道裝置修飾不同化合物 75 3.8.2 奈米金平板式液相感測器偵測多種醣類 78 3.9 奈米金平板式液相感測器應用於液相層析儀 80 第四章 結論 83 4. 參考文獻 84

    1. Tian, S.; Zhu, L.; Shi, Y. Environ. Sci. Technol. 2004, 38, 489-495.
    2. Nakashima, H.; Nakajima, D.; Takagi, Y.; Goto, S. J. Health. Sci. 2007, 53, 311-319.
    3. Klemp, M.; Peters, A.; Sacks, R. Environ. Sci. Technol. 1994, 28, No8.
    4. Jin, Y.; Kang, X.; Song, Y.; Zhang, B.; Cheng, G.; Dong, S. Anal. Chem. 2001, 73 (13), 2843–2849.
    5. Wu, C.; Xu, Q. H. Langmuir. 2009, 25, 9441-9446.
    6. Okada, R. Appl. Phys. Lett. 1991, 58, 1662.
    7. Wang, Y.; Herron, N. J. J. Phys. Chem. 1987, 91, 257.
    8. Cain, J. L; Nikle, D. E. IEEE. 1996, 32, 4490.
    9. Huang, H. H.; Yan, F. Q.; Kek. Y. M.; Chew, C. H.; Xu, G. Q.; Ji, W.; Oh, P. S.; Tang, S. H. Langmuir. 1997, 13, 172.
    10. Hsu, W. K.; Hare, J. P.; Terrones, M.; Kroto, H. W.; Walton, D.; Harris P. J. F. Nature. 1995, 677, 687.
    11. Hsu, W. K.; Terrones, M.; Hare, J. P.; Terrones, H.; Kroto, H. W.; Walton, D. Chem. Phys. Lett. 1997, 9, 923.
    12. Dalfovo, M. C.; Salvarezza, R. C.; Ibanez, F. J. Anal. Chem. 2012, 84, 4886-4892.
    13. Wang, Yi.; Qian, W. P.; Tan, Y.; Ding, S. H. Biosens. Bioelectron. 2008, 23, 1166-1170.
    14. Li, H.; Ma, X.; Dong, J.; Qian, W. Anal. Chem. 2008, 81, 8916-8922.
    15. 陳鳳宜, 奈米金表面電漿共振原理應用於中空光纖式氣相層析偵測器之研製, 國立臺灣師範大學, 2011.
    16. 張立德, 奈米材料 Nanomaterials, 五南圖書出版公司, 2002.
    17. 馬振基, 奈米材料科技原理與應用,全華科技圖書股份有限公司, 2005.
    18. 劉仲明, 郭東瀛, 競逐原子世界-奈米技術與產業發展系列, 經濟部工業局, 2002.
    19. 曹茂盛, 奈米材料導論, 學富文化事業有限公司, 2002.
    20. 盧永坤, 奈米科技概論, 滄海書局, 2005.
    21. Kubo, R. J. Phys. Soc. Jpn. 1962, 117, 975-981.
    22. 陳昱銓, 奈米銀光學感測器之表面修飾與氣體選擇性研究暨微機電-氣體樣品前濃縮裝置之自動化系統建立, 私立輔仁大學, 2008.
    23. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267–297.
    24. 曾賢德, 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作, 物理雙月刊, 2010, 32卷, 2期.
    25. 邱國斌, 蔡定平, 金屬表面電將簡介, 物理雙月刊, 2006, 28卷, 2期.
    26. Evanoff, D. D.; Chumanov, C. J. Phys. Chem. B. 2004, 108, 13957-13962.
    27. 林義芳, 反射式金奈米粒子修飾光纖於生化感測器之研究, 國立中正大學, 2003.
    28. 鄭嘉升, 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究, 私立輔仁大學, 2006.
    29. Matsubara, K.; Kawata, S.; Minami, S. Appl. Spectrosc. 1988, 42, 1375-1379
    30. Wood, R. W. Phil. Mag. 1902, 4, 396-342.
    31. Otto, A. Z. Phys. Chem. Chem. Phys. 1968, 216, 398-410.
    32. Kretchmann, E. Z. Phys. Chem. Chem. Phys. 1971, 221, 346-356.
    33. Melendez, J. R.; Carr, D. U.; Bartholomew, K.; Kukanskis, J.; Elkind, S.; Yee, C. Furlong, R. Sens. Actuators, B. 1996, 35, 212-216.
    34. Cahill, C.P.; Johnston, S. K. Sens. Actuators, B. 1997, 45, 161-166.
    35. Pejcic, B.; Eadington, A. Environ. Sci. Technol. 2007, 41, 6333.
    36. Gu, J. H.; Cao, Shen, Q. S.; Chen, G. J. Phys. D. Appl. Phys. 2008, 41. 155309
    37. Nylander, C.; Liedberg, B.; Lind, T. Sens Actuators. 1982, 3, 79-88.
    38. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. J. Respir. Cell Mol. Biol. 1998, 120, 1959-1964.
    39. http://www.biacore.com
    40. 潘杰, 以光纖式表面電漿共振感測器檢測生物小分子, 私立大同大學, 2007.
    41. Li, H.; Ma. X.; Dong, J.; Qian, W. P. Anal. Chem. 2009, 81, 8916-8922.
    42. Guo, L.; Chen, G.; Kim, D. H. Anal. Chem. 2010, 82, 5147-5153.
    43. Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P. Anal. Chem. 2010, 82, 8042-8046.
    44. Dalfovo, M. C.; Salvarezza, R. C.; Ibanez, F. J. Anal. Chem. 2012, 84, 4886-4892.
    45. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735.
    46. Shantang, L.; Tau, Z.; Ruisheng, H. and Zhongfan, L. Phys. Chem. 2002, 4, 6059-6062.

    下載圖示
    QR CODE