簡易檢索 / 詳目顯示

研究生: 邱靖玉
Ching-Yu Chiu
論文名稱: La(2-x)/3NaxTiO3與Nd(2-x)/3LixTiO3微波陶瓷材料之拉曼光譜與延伸X光吸收精細結構
Raman Spectra and EXAFS Characterization of La(2-x)/3NaxTiO3 and Nd(2-x)/3LixTiO3
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 84
中文關鍵詞: 鑭鈉鈦氧釹鋰鈦氧A位置空缺拉曼
英文關鍵詞: La(2-x)/3NaxTiO3, Nd(2-x)/3LixTiO3, A-site vacancy, Raman
論文種類: 學術論文
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將討論A2/3BO3缺陷型鈣鈦礦材料,利用拉曼散射及延伸X光吸收精細結構 (EXAFS) 的量測,得到摻雜鈉的La(2-x)/3NaxTiO3 (0.02≦x≦0.5) 與摻雜鋰的Nd(2-x)/3LixTiO3 (0.1≦x≦0.5) 之結構與微波介電特性的關聯性。從X光繞射與拉曼光譜中,兩種材料在光譜上皆有明顯改變,估計有相變發生。從群論理論分析,可得到拉曼光譜中各頻率代表的原子振動方式。拉曼光譜在200~400 cm-1區域中,與A-site相關的E (239、254 cm-1) 與A1 (322、338 cm-1) 振動模,隨著摻雜鈉與鋰的濃度增加,La(2-x)/3NaxTiO3與Nd(2-x)/3LixTiO3分別表現出紅移與藍移的現象,聲子頻率位移相反與A-site縮減質量速度和介電常數上升快慢有關聯。拉曼光譜得到AO12 (AO6) 的緊密度變大,會使得B-site的鍵結強度減弱。Nd(2-x)/3LixTiO3中的A1 (471 cm-1) 振動膜發現有紅移現象,表示沿z軸上O-Ti-O鍵結強度變鬆散。由EXAFS得知,Nd(2-x)/3LixTiO3在x≦0.3時,隨著摻雜鋰的濃度愈高,平均Ti-O的鍵長增加,即氧八面體變大與介電常數成正比,且沿著z軸上O-Ti-O的鍵長也增加;x>0.3時,隨鋰摻雜增加,平均Ti-O鍵長縮小,亦與介電常數成正比。隨著摻雜物增加,A-site有序性減小,拉曼光譜中的各聲子半高寬均變寬,與Q×f值成反比。由拉曼散射與X光吸收精細結構實驗中,皆可得到兩系列材料的微波介電特性,與內部微結構均有密切的關係。

    A-site deficient perovskite compounds found in La(2-x)/3NaxTiO3 (0.02≦x≦0.5) and Nd(2-x)/3LixTiO3 (0.1≦x≦0.5) microwave ceramics were investigated by Raman scattering and extended X-ray absorption fine structure (EXAFS) measurement at room temperature to reveal the correlation between microwave dielectric properties and micro-structure. From the lineshape of X-ray diffraction and Raman spectra, phase transitions were found. Group theoretical analysis of Raman active modes de-cided vibrations of phonons in Raman spectra. During 200 to 300 cm-1 frequency re-gion, E (239, 254 cm-1) and A1 (322, 338 cm-1) modes shifted in the opposite way are due to the decreasing rate of reduced mass and the increasing speed of dielectric con-stant. Therefore, the increase of A-site bonding strength weakens the B-site bonding force. The 471 cm-1 peak (A1 symmetry) redshift with the lithium concentration, this result indicated O-Ti-O bonding force decreases along the z-axis. EXAFS results of Nd(2-x)/3LixTiO3 obtained, when x≦0.3, the average Ti-O bond length of the first shell and O-Ti-O bond length increase, as expected the results that bonding force decrease with the lithium concentration from the analysis of E (239, 254 cm-1), A1 (322, 338 cm-1), and A1 (471 cm-1) peaks; when x>0.3, the Ti-O bond length decrease with the lithium concentration. The volume of TiO6 is proportional to dielectric constant. Wider widths of phonons caused by the A-site disordering imply the decrease of Q×f value. The microwave dielectric properties and micro-structure have reciprocal relationship as discussed above.

    中文摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 VII 第 1 章 緒論 1 1.1 陶瓷材料的發展與應用 1 1.2 研究動機與目的 3 1.3 參考文獻 3 第 2 章 基礎理論 5 2.1 微波介電特性 5 2.1.1 介電係數 5 2.1.2 品質因子 6 2.1.3 溫度係數 7 2.2 複合鈣鈦礦結構 8 2.2.1 氧八面體的扭曲與傾斜 9 2.2.2 A-site缺陷結構 10 2.3 離子導體 12 2.4 拉曼散射 14 2.5 X光繞射 16 2.6 X光吸收光譜 17 2.6.1 X光吸收精細結構 17 2.6.2 延伸X光吸收精細結構 19 2.7 參考文獻 23 第 3 章 拉曼光譜分析 25 3.1 樣品結構與介電性質 25 3.2 群論分析與拉曼光譜 34 3.3 拉曼光譜分析 44 3.4 結論 54 3.5 參考文獻 55 第 4 章 EXAFS光譜分析 58 4.1 La(2-x)/3NaxTiO3與Nd(2-x)/3LixTiO3的X光繞射 58 4.2 實驗數據處理流程 60 4.3 Nd(2-x)/3LixTiO3的EXAFS分析 62 4.4 結論 73 4.5 參考文獻 74 第 5 章 結論 75

    第1章
    [1] Richtmyer, R.D., "Dielectric Resonators." J. Appl. Phys. 10, 391-398 (1939).
    [2] Cohn, S.B., "Microwave Bandpass Filters Containing High-Q Dielectric Resonators." IEEE Trans. on MTT, 218-227 (1968).
    [3] L. Latie, G.V., D. Conte, G. Le Flem, "Ionic conductivity of oxides with general formula LixLn1/3Nb1-xTixO3 (Ln=La, Nd)." J. Solid State Chem., 51, 293-299 (1984)..
    [4] M. Itoh, Y.I., J. Wu, L. Chen, T. Nakamura, "High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln=La, Pr, Nd, Sm.)" Solid State Ionics 70, 203-207 (1994).
    [5] Y. Inaguma, M.I., L. Chen, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, "High ionic conductivity in lithium lanthanum titanate." Solid State Com-munication 86, 689-693 s (1993).
    [6] T. Ishihara, H.M., Y. Takita, "Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor." J. Am. Chem. Soc. 116: p. 3801-3803 (1994).
    [7] Minh, N.Q., "Ceramic Fuel Cells." J. Am. Ceram. Soc 76, 563-588 (1993).
    第2章
    [1] H. Ouchi, S.K., "Dielectric Ceramics for Microwave Application" J. Am. Ceram. Soc. 24, 60-64 (1985).
    [2] B. W. Hakki, P.D.C., "A Dielectric Resonator Method of Measuring In-ductive Capacities in the Millimeter Range." IEEE Trans. on MTT 8, 402-410 (1960).
    [3] Goldschmidt, V.M., "Die Gesetze der Krystallochemie." Naturwissen-schaften. 14, 477-485 (1926).
    [4] Shannon, R.D., "Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides." Acta Cryst. A32, 757-761 (1976).
    [5] Glazer, A.M., "The Classification of Tilted Octahedra in Perovskites." Acta Cryst. B28, 3384-3391 (1972).
    [6] Glazer, A.M., "Simple Ways of Determining Perovskite Structures." Acta Cryst. A31, 756-762 (1975).
    [7] Hull, S., "Superionics: Crystal Structures and Conduction Process." Rep. Prog. Phys. 67, 1233-1314 (2004).
    [8] T. Katsumata, Y.I., M. Itoh, "New Perovskite-type Lithium Ion Conduc-tors, LaxMyLi1-3x-yNbO3 (M=Ag, Na)." Solid State Ionics 113-115, 465-469 (1998).
    [9] L. X. He, H.I.Y., "Effect of B-site ion (M) substitution on the ionic con-ductivity of (Li3xLa2/3-x)1+y/2(MyTi1-y)O3 (M= Al, Cr)." Electrochimica Acta 48, 1357-1366 (2003).
    [10] S. Stramare, V.T., W. Weppner, "Lithium Lanthanum Titanates: A Re-view." Chem. Mater., 2003. 15, 3974-3990 (2003).
    [11] Y. Zhang, Y.C., "Al, F-doped new perovskite lithium fast ion conductor Li3xLa2/3-x□1/3-2xTi1-yAlyO3-yFy (x=0.11)." Ionics 12, 63-67 (2006).
    [12] J. J. Bian, G.X.S., K. Yan, "Structure and microwave dielectric properties of Nd(2-x)/3LixTiO3." Ceram. Int., 2007. 34, 893-896 (2007).
    [13] J. J. Bian, K.Y., "Structure and microwave dielectric properties of La(2-x)/3NaxTiO3." J. Electroceram doi: 10.1007/s10832-007-9089-3 (2007).
    [14] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,中國材料科學學會,138 (1996)。
    第3章
    [1] M. Kestigian, R. Ward, "The Lanthanum-Titanium-Oxygen System." J. Am. Ceram. Soc. 77, 6199-6200 (1955).
    [2] J. J. Bian, G. X. Song, K. Yan, "Structure and microwave dielectric properties of Nd(2-x)/3LixTiO3." Ceram. Int. 34, 893-896 (2007).
    [3] J. J. Bian, K. Yan, "Structure and microwave dielectric properties of La(2-x)/3NaxTiO3." J. Electroceram, doi: 10.1007/s10832-007-9089-3 (2007).
    [4] M. Abe, K. Uchino, "X-ray study of the deficient perovskite La2/3TiO3." Mat. Res. Bull. 9, 147-155 (1974).
    [5] I. S. Kim, T. Nakamura, Y. Inaguma, M. Itoh, "Electronic transport phenomena of La2/3+xTiO3-δ (x<0.2) metal-nonmetal transition by electron doping." J. Solid State Chem. 113, 281-299 (1994).
    [6] M. J. MacEachern, H. Dabkowska, J. D. Garrett, G. Amow, W. Gong, G. Liu, J. E. Greedan, "Metal-Insulator Transitions in La1-xTiO3, 0≦x≦0.33. Structure-property correlation." Chem. Mater. 6, 2092-2102 (1994).
    [7] P. D. Battle, J. E. Bennett, J. Sloan, R. J. D. Tilley, J. F. Ventle, "A-site Ca-tion-Vacancy Ordering in Sr1-3x/2LaxTiO3: A Study by HRTEM." J. Solid State Chem. 149, 360-369 (1999).
    [8] C. J. Howard, Z. Zhang, "Structures and phase transition in the layered perovskite La0.6Sr0.1TiO3: a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis." J. Phys. Condens. Matter 15, 4543-4553 (2003).
    [9] M. Yashima, M. Mori., T. Kamiyama, K. I. Oikawa, A. Hoshikawa, S. Torii, K. Sai-toh, K. Tsuda, "High-temperature phase transition in lanthanum titanate perovskite La0.64(Ti0.92,Nb0.08)O3." Chem. Phys. Lett. 375, 240-246 (2003).
    [10] R. Ali, F. Izumi, "Neutron Powder Diffraction Study of a Phase Transition in La0.68(Ti0.95Al0.05)O3." J. Am. Ceram. Soc. 89, 3805-3811 (2006).
    [11] A. I. Ruiz, M. L. López., C. Pico, M. L. Veiga, "New La2/3TiO3 Derivatives: Struc-ture and Impedance Spectroscopy." J. Solid State Chem. 163, 472-478 (2002).
    [12] A. I. Ruiz, M. L. López., C. Pico, M. L. Veiga, "Structural Modifications induced by composition in the La1.33-xNa3xTi2O6 perovskites: A neutron diffraction study." Chem. Mater. 17, 1391-1397 (2005).
    [13] Shannon, R.D., "Revised Effective Ionic Radii and Systematic Studies of Interato-mie Distances in Halides and Chaleogenides." Acta Cryst. A32, 757-761 (1976).
    [14] A. I. Ruiz, M. L. López., M. L. Veiga, C. Pico, "Electrical behavior of La1.33-xM3xTi2O3 perovksites (M=Li, Na and K)." Int. J. Inorg. Mater. 1, 193-200 (1999).
    [15] A. S. Sefat, G. Amow, M. -Y. Wu, G. A. Botton, J. E. Greedan, "High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x=0 to 0.33." J. Solid State Chem. 178, 1008-1016 (2005).
    [16] Yoshii, K., "Synthesis and Magnetic Properties of Ln2/3TiO3 (Ln= Pr and Nd)." J. Solid State Chem. 149 (2), 354-359 (2000).
    [17] J. M. S. Skakle, G. C. Mather, M. Morales, R. I. Smith, A. R. West., "Crystal structure of the Li+ ion-conducting phases, Li0.5–3xRE0.5+ xTiO3: RE= Pr, Nd; x= 0.05." J. Mater. Chem. 5 (11), 1807-1808 (1995).
    [18] J. -S. Kim, C. -I. Cheon, H. -J. Kang, S. -H. Lee, K. -Y. Kim, S. Nam, J. -D. Byun, "Crystal structure and microwave dielectric properties of Ca-TiO3-(Li1/2Nd1/2)TiO3-(Ln1/3Nd1/3)TiO3 (Ln=La, Dy) ceramics." Jpn. J. Appl. phys. 38, 5633-5637 (1999).
    [19] A. D. Robertson, S.G.M., A. Coats, A. R. West, "Phase diagrams and crystal che-mistry in the Li+ ion conducting perovskites, Li0.5–3xRE0.5+ xTiO3: Re=La, Nd. J. Mater. Chem." 5 (9), 1405-1412 (1995).
    [20] RASMIN Web: http://riodb.ibase.aist.go.jp/rasmin/
    [21] J. D. Freire, R. S. Katiyar, "Lattice dynamics of crystals with tetragonal BaTiO3 structure." Phys. Rev. B 37(4), 2074-2085 (1988).
    [22] P. S. Dobal, S. B. Majumder, S. Bhaskar, R. S. Katiyar, "Micro-Raman probing of short-range disorder in lanthanum-doped lead titanate films." J. Raman Spectrosc. 30 (7): p. 567-572 (1999).
    [23] J. Frantti, V. Lantto, "Raman studies between 11 and 300 K of the effects of Nd additive in ferroelectric lead-titanate ceramics." Phys. Rev. B 54, 12139-12150 (1996).
    [24] S. Saïd, P. Majumder, T. Merle-Méjean, J. P. Mercurio, "Raman spectroscopy study of the Na0.5Bi0.5TiO3–PbTiO3 system." Materials Letters 58 (9), 1405-1409 (2004).
    [25] M. A. Laguma, M. L. Sanjuán, A. Várez, J. Sanz, "Lithium dynamics and disorder effects in the Raman spectrum of La(2-x)/3LixTiO3." Phys. Rev. B 66, 054301 (2002).
    [26] M. L. Sanjuán, M. A. Laguna, A. G. Belous, and O. I. V’yunov, "On the local structure and lithinum dynamic." Chem. Mater. 17, 5862-5866 (2005).
    第4章
    [1] J. J. Bian, G.X.S., K. Yan, "Structure and microwave dielectric properties of Nd(2-x)/3LixTiO3. " Ceram. Int. 34, 893-896 (2007).
    [2] J. J. Bian, K.Y., "Structure and microwave dielectric properties of La(2-x)/3NaxTiO3. " J. Electroceram doi: 10.1007/s10832-007-9089-3 (2007).
    [3] A. I. Ruiz, M. L. López., C. Pico, M. L. Veiga, "Structural Modifications in-duced by composition in the La1.33-xNa3xTi2O3 perovskites: A neutron diffraction study." Chem. Mater. 17, 1391-1397 (2005).
    [4] A. D. Robertson, S.G.M., A. Coats, A. R. West, "Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5–3xRE0.5+ xTiO3: Re=La, Nd. " J. Mater. Chem. 5(9), 1405-1412 (1995).
    [5] Shannon, R.D., "Revised Effective Ionic Radii and Systematic Studies of Inte-ratomie Distances in Halides and Chaleogenides." Acta Cryst. A32, 757-761 (1976).
    [6] A. S. Sefat, G. Amow, M. -Y. Wu, G. A. Botton, J. E. Greedan, "High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x=0 to 0.33." J. Solid State Chem. 178: p. 1008-1016 (2005).
    [7] J. -S. Kim, C. -I. Cheon, H. -J. Kang, S. -H. Lee, K. -Y. Kim, S. Nam, J. -D. Byun, "Crystal structure and microwave dielectric properties of Ca-TiO3-(Li1/2Nd1/2)TiO3-(Ln1/3Nd1/3)TiO3 (Ln=La, Dy) ceramics." Jpn. J. Appl. phys. 38, 5633-5637 (1999).

    QR CODE