簡易檢索 / 詳目顯示

研究生: 張承俊
Cheng-Chun Chang
論文名稱: 奈米鑽石結合質譜技術分析醣蛋白
The Application of Nanodiamond and Mass Spectrometry in Glycoproteins Analysis
指導教授: 張煥正
Chang, Huan-Cheng
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 奈米鑽石質譜
論文種類: 學術論文
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們發展了一套方法,此方法可以加快、簡化在分析醣蛋白上中性醣醣基時的實驗流程,而且同時也可以增強在利用基質輔助雷射脫附游離飛行時間質譜儀分析醣類時醣類的訊號強度。
      此方法包括了利用微波加熱輔助進行醣蛋白的酵素消化及切醣,接著利用酸洗過後含有羧基的奈米鑽石進行純化,將胜肽移除,最後將待測樣品溶液先與氫氧化鈉溶液混合,再與基質(DHB)混合,以抑制在質譜儀分析時未移除乾淨的胜肽及醣類接鉀([M+K]+)的離子訊號。
      利用此方法所展現的優點,皆是我們使用基質輔助雷射脫附游離飛行時間質譜儀分析Ovalbumin和Ribonuclease B這兩種醣蛋白上所切下的N-linked的醣類當作樣品所得到的結果。

    Abstract 3 論文摘要 4 Chapter 1 5 緒論 5 1.1 奈米鑽石 5 1.2 醣蛋白及醣 13 Chapter 2 22 實驗部份 22 2.1 實驗藥品 22 2.2 實驗儀器 24 2.3  實驗步驟 26 a.酸洗奈米鑽石: 26 b.測試酸洗後的奈米鑽石會不會吸附醣類: 26 c.利用傳統加熱方法做醣蛋白的消化及切醣: 27 d.改良微波反應器加熱管: 27 e.測試Trypsin digest微波加熱反應的條件: 28 f.測試PNGase F切醣微波加熱反應的條件: 29 g.利用微波加熱方法做醣蛋白的消化及切醣: 29 h.利用酸洗過後的奈米鑽石做醣的純化: 30 i.MALDI樣品的製備: 30 Chapter 3 33 結果與討論 33 3.1 測試酸洗後的奈米鑽石會不會吸附醣類: 33 3.2 利用傳統加熱方法做醣蛋白的消化及切醣加上奈米鑽石分離及質譜分析: 36 3.3 測試微波反應的條件: 37 3.4 利用微波加熱方法做醣蛋白的消化及切醣加上奈米鑽石分離及質譜分析: 40 3.5 改善基質條件將醣類接鉀的離子訊號被抑制掉: 41 3.6 改善基質條件降低胜肽的偵測靈敏度: 47 3.7 結合奈米鑽石純化及改善基質進行醣蛋白分析: 48 a.傳統加熱方法: 48 b.微波加熱方法: 50 3.8 分析醣基為酸性醣的醣蛋白: 53 Chapter 4 56 結論 56 參考文獻 58

    1. Lily Yang, H. M., Y. Andrew Wang, Zehong Cao, Xianghong Peng, Xiaoxia Wang, Hongwei Duan, Chunchun Ni, Qingan Yuan, Gregory Adams, Mark Q. Smith, William C. Wood, Xiaohu Gao, Shuming Nie,, Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging. Small 2009, 5 (2), 235-243.
    2. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002, 298 (5599), 1759-1762.
    3. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307 (5709), 538-544.
    4. Won-Kyu Rhim, J.-S. K., Jwa-Min Nam,, Lipid-Gold-Nanoparticle Hybrid-Based Gene Delivery. Small 2008, 4 (10), 1651-1655.
    5. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters 2006, 6 (4), 662-668.
    6. Nehl, C. L.; Liao, H.; Hafner, J. H., Optical Properties of Star-Shaped Gold Nanoparticles. Nano Letters 2006, 6 (4), 683-688.
    7. Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J., Electrostatically Mediated Liposome Fusion and Lipid Exchange with a Nanoparticle-Supported Bilayer for Control of Surface Charge, Drug Containment, and Delivery. Journal of the American Chemical Society 0 (0).
    8. Liu, J.; Stace-Naughton, A.; Jiang, X.; Brinker, C. J., Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles. Journal of the American Chemical Society 2009, 131 (4), 1354-1355.
    9. Po-Chiao Lin, P.-H. C., Shu-Hua Chen, Hsin-Kai Liao, Kai-Yi Wang, Yu-Ju Chen, Chun-Cheng Lin,, Ethylene Glycol-Protected Magnetic Nanoparticles for a Multiplexed Immunoassay in Human Plasma13. Small 2006, 2 (4), 485-489.
    10. Wei-Jen Chen, P.-J. T., Yu-Chie Chen,, Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small 2008, 4 (4), 485-491.
    11. Maxwell, D. J.; Bonde, J.; Hess, D. A.; Hohm, S. A.; Lahey, R.; Zhou, P.; Creer, M. H.; Piwnica-Worms, D.; Nolta, J. A., Fluorophore-Conjugated Iron Oxide Nanoparticle Labeling and Analysis of Engrafting Human Hematopoietic Stem Cells. Stem Cells 2008, 26 (2), 517-524.
    12. Chan, W. C.; nbsp; W.; Nie, S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281 (5385), 2016-2018.
    13. Smith, A. M.; Nie, S., Chemical analysis and cellular imaging with quantum dots. The Analyst 2004, 129 (8), 672-677.
    14. Anke Krueger, New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials. Chemistry - A European Journal 2008, 14 (5), 1382-1390.
    15. Kruger, A.; Liang, Y.; Jarre, G.; Stegk, J., Surface functionalisation of detonation diamond suitable for biological applications. Journal of Materials Chemistry 2006, 16 (24), 2322-2328.
    16. Huang, L.-C. L.; Chang, H.-C., Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir 2004, 20 (14), 5879-5884.
    17. Krueger, A.; Stegk, J.; Liang, Y.; Lu, L.; Jarre, G., Biotinylated Nanodiamond: Simple and Efficient Functionalization of Detonation Diamond. Langmuir 2008, 24 (8), 4200-4204.
    18. Chen, W.-H.; Lee, S.-C.; Sabu, S.; Fang, H.-C.; Chung, S.-C.; Chang, H.-C., Solid-Phase Extraction and Elution on Diamond (SPEED): A Fast and General Platform for Proteome Analysis with Mass Spectrometry. Analytical Chemistry 2006, 78 (12), 4228-4234.
    19. Morava, E.; Lefeber, D. J.; Urban, Z.; de Meirleir, L.; Meinecke, P.; Gillessen Kaesbach, G.; Sykut-Cegielska, J.; Adamowicz, M.; Salafsky, I.; Ranells, J.; Lemyre, E.; van Reeuwijk, J.; Brunner, H. G.; Wevers, R. A., Defining the phenotype in an autosomal recessive cutis laxa syndrome with a combined congenital defect of glycosylation. Eur J Hum Genet 2007, 16 (1), 28-35.
    20. Dell, A.; Morris, H. R., Glycoprotein Structure Determination by Mass Spectrometry. Science 2001, 291 (5512), 2351-2356.
    21. Harvey, D. J., Postsource decay fragmentation of N-linked carbohydrates from ovalbumin and related glycoproteins. Journal of the American Society for Mass Spectrometry 2000, 11 (6), 572-577.
    22. Stahl, B.; Steup, M.; Karas, M.; Hillenkamp, F., Analysis of neutral oligosaccharides by matrix-assisted laser desorption ionization mass spectrometry. Analytical Chemistry 1991, 63 (14), 1463-1466.
    23. Packer, N. H.; Lawson, M. A.; Jardine, D. R.; Redmond, J. W., A general approach to desalting oligosaccharides released from glycoproteins. Glycoconjugate Journal 1998, 15 (8), 737-747.
    24. Wang, Y.; Iqbal, Z.; Mitra, S., Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration. Journal of the American Chemical Society 2006, 128 (1), 95-99.
    25. Cheng, H.-L.; Pai, P.-J.; Her, G.-R., Linkage and Branch Determination of N-linked Oligosaccharides Using Sequential Degradation/Closed-Ring Chromophore Labeling/Negative Ion Trap Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2007, 18 (2), 248-259.
    26. Bartsch, H.; Konig, W. A.; Straner, M.; Hintze, U., Quantitative determination of native and methylated cyclodextrins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Carbohydrate Research 1996, 286, 41-53.
    27. Simon North, G. O., Helen Birrell, Neville Haskins, Patrick Camilleri,, Minimizing cationization effects in the analysis of complex mixtures of oligosaccharides. Rapid Communications in Mass Spectrometry 1997, 11 (15), 1635-1642.
    28. Anja Pfenninger, M. K., Berndt Finke, Bernd Stahl, Gther Sawatzki,, Matrix optimization for matrix-assisted laser desorption/ionization mass spectrometry of oligosaccharides from human milk. Journal of Mass Spectrometry 1999, 34 (2), 98-104.
    29. Harvey, D. J.; Wing, D. R.; Kter, B.; Wilson, I. B. H., Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. Journal of the American Society for Mass Spectrometry 2000, 11 (6), 564-571.
    30. Rudd, P. M.; Scragg, I. G.; Coghill, E.; Dwek, R. A., Separation and analysis of the glycoform populations of ribonuclease B using capillary electrophoresis. Glycoconjugate Journal 1992, 9 (2), 86-91.
    31. David J. Harvey, Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. Journal of Mass Spectrometry 2000, 35 (10), 1178-1190.
    32. Andrew K. Powell, D. J. H., Stabilization of Sialic Acids in N-linked Oligosaccharides and Gangliosides for Analysis by Positive Ion Matrix-assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Communications in Mass Spectrometry 1996, 10 (9), 1027-1032.

    無法下載圖示 本全文未授權公開
    QR CODE