研究生: |
曾嘉玲 Chia-Ling Tseng |
---|---|
論文名稱: |
探討單獨使用新穎化學合成物Yao-ram-2-7或合併使用薑黃素對肝癌細胞的抑制並利用連接網路資料庫比對及證實Yao-ram-2-7之生理功能 To study anticancer effect of a novel compound Yao-ram-2-7 in the presence or absence of phytochemical curcumin on human hepatocellular carcinoma cells and to identify other biological function of Yao-ram-2-7 using Connectivity Map |
指導教授: |
蘇純立
Su, Chun-Li |
學位類別: |
碩士 Master |
系所名稱: |
人類發展與家庭學系 Department of Human Development and Family Studies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | Yao-ram-2-7 、人類肝癌細胞 、細胞凋亡 、細胞自噬 、薑黃素 、Sorafenib 、Connectivity Map |
英文關鍵詞: | Yao-ram-2-7, human hepatocellular carcinoma, apoptosis, autophagy, curcumin, Sorafenib, Connectivity Map |
論文種類: | 學術論文 |
相關次數: | 點閱:369 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌是世界五大癌症之一,因不易早期發現及預後不佳,使得肝
癌在癌症所致之死亡率高居不下。根據行政院衛生署統計,肝癌一直
是國人癌症死因的大宗。治療肝癌方式,以手術和化學治療為主。在
化學治療方面,藥效常局限於抗藥性的產生使藥效減低,因而促使研
發更有效的新穎藥物。在本研究團隊自行合成一系列化合物中經
MTT assay 篩選,發現 Yao-ram-2-7 具有抑制人類肝癌細胞(Hep 3B)
生長的效用。在本研究中,Yao-ram-2-7 與臨床肝癌標靶用藥 Sorafenib
在相同的實驗條件下比較,分別處理 Hep 3B 及人類臍靜脈內皮細胞
(HUVEC)。發現 Yao-ram-2-7 與 Sorafenib 毒殺 Hep 3B 能力相當,
處理 HUVEC 的安全性測試中,Yao-ram-2-7 毒性較 Sorafenib 弱,顯
示 Yao-ram-2-7 可能對人體的副作用較小。利用 propidium iodide 染色分析細胞凋亡現象及以 acridine orange 染色分析細胞自噬現象,發現
Yao-ram-2-7 誘發 Hep 3B 產生細胞凋亡及細胞自噬的比例隨時間和劑
量增加而增加;利用西方墨點法也確定活化態 caspase 3 蛋白及 LC3-II
蛋白的表現增加,證實 Yao-ram-2-7 可誘發 Hep 3B 產生細胞凋亡及
細胞自噬。細胞凋亡實驗結果顯示,相較於 Sorafenib 在高劑量下才
具有毒殺癌細胞能力,Yao-ram-2-7 在較低劑量下即有效果;細胞自
噬實驗發現,Yao-ram-2-7 比 Sorafenib 在較低劑量下即可引發細胞產生自噬現象。因營養素可能具有輔助藥物效用,因此本研究也探討具
有抗癌功用的天然植化素—薑黃素(Curcumin)與 Yao-ram-2-7 或
Sorafenib 合併使用下,是否對抑制 Hep 3B 細胞生長有更好的效果。
MTT assay 實驗結果發現 Hep 3B 在 Yao-ram-2-7 與薑黃素同時處理後,抑制細胞生長效果比單獨處理更佳,具有加乘效應;分析細胞週期的
變化,發現合併使用薑黃素有使 G2/M 期增加的趨勢,使癌細胞分裂
減少。但在肝癌標靶藥物 Sorafenib 與薑黃素合併使用則發現產生拮
抗,因此建議臨床使用 Sorafenib 治療的患者不可食用含有薑黃素的
食物及膳食補充品。另外,本研究透過「連接網路資料庫(Connectivity
Map;CMAP)」比對,發現 Yao-ram-2-7 可能與 GSK-3 抑制劑
AR-A014418 作用相似。實驗結果證實 AR-A014418 如 Yao-ram-2-7
皆可誘發 Hep 3B 產生細胞自噬,Yao-ram-2-7 可抑制 phospho-GSK-3
及總 GSK-3蛋白表現,顯示 Yao-ram-2-7 的生醫上的其它應用性。
整體而言,本研究結果發現 Yao-ram-2-7 具有開發為抗癌用藥的潛力,
提供肝癌病患治療上不同選擇;與薑黃素合併使用能增加藥物的敏感
性,使化療藥物發揮更好的效果。
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide. More than 75% cases of HCC occur in the Asia-Pacific region. High mortality of HCC is due to the difficulty in diagnosis and poor prognosis. Chemotherapy is a traditional choice for inoperable HCC, whereas drug resistant limits the therapeutic effect. Thus, there is an urgent need to develop new potential drugs for HCC. Our research group has synthesized a series of compounds for anti-cancer screening using MTT assay. Yao-ram-2-7 is one of them significantly inhibits the growth of HCC Hep 3B cells. Especially, Yao-ram-2-7 displays less cytotoxicity on normal human umbilical vein endothelial cells than the HCC targeted therapy Sorafenib, suggesting Yao-ram-2-7 is safer than Sorafenib. We further show that Yao-ram-2-7 induces apoptosis of Hep 3B cells in a time- and dose-related manner using propidium iodide staining followed by flow cytometry. Increase of cleavage-caspase 3 expression is observed using Western blotting. Yao-ram-2-7 also induces autophagy of Hep 3B cells characterized by the accumulation of acidic vesicular organelles by flow cytometry after staining the cells with acridine orange. Western blot analysis further observed the conversion of
autophagy marker from LC3-I to LC3-II. Compared with Sorafenib, Yao-ram-2-7 induces apoptosis and autophagy at a relatively lower dosage for a shorter period of time. Recently, anticancer and chemopreventive effects of phytochemicals such as curcumin have been suggested. In the present study, combination of Yao-ram-2-7 with curcumin promotes growth inhibition of Hep 3B cells and produces an additivity effect. Cell cycle analysis suggests that the decrease in tumor cell proliferation is due to an increase of G2/M arrest. In contrast, addition of curcumin to Sorafenib displays an antagonism effect, suggesting that patients treated with Sorafenib should avoid food and supplements containing curcumin. In addition, we discover that a GSK-3 inhibitor AR-A014418 and Yao-ram-2-7 have similar biological functions since AR-A014418 alters gene expression of Hep 3B cells similarly to Yao-ram-2-7 by using a bioinformatics database Connectivity Map (CMAP). Western blot and flow cytometric analysis confirm that Yao-ram-2-7 behaves like AR-A014418, inducing autophagy and decreasing protein expression of phospho-GSK-3and total GSK-3 These data demonstrate that query gene expression profiles using CMAP is a useful shortcut to reveal molecular action of a small chemical compound. Taken together, our data suggest chemotherapeutic potential of Yao-ram-2-7 on HCC, and addition of curcumin further promots its chemosensitivity.
Abounit, K., Scarabelli, T. M., & McCauley, R. B. (2012). Autophagy in mammalian
cells. World J Biol Chem, 3(1), 1-6.
Anderluh, M., Cesar, J., Stefanic, P., Kikelj, D., Janes, D., Murn, J., et al. (2005).
Design and synthesis of novel platelet fibrinogen receptor antagonists with
2H-1,4-benzoxazine-3(4H)-one scaffold. A systematic study. Eur J Med Chem,
40(1), 25-49.
Arii, S., Yamaoka, Y., Futagawa, S., Inoue, K., Kobayashi, K., Kojiro, M., et al.
(2000). Results of surgical and nonsurgical treatment for small-sized
hepatocellular carcinomas: a retrospective and nationwide survey in Japan.
The Liver Cancer Study Group of Japan. Hepatology, 32(6), 1224-1229.
Ban, J. O., Kwak, D. H., Oh, J. H., Park, E. J., Cho, M. C., Song, H. S., et al. (2010).
Suppression of NF-kappaB and GSK-3beta is involved in colon cancer cell
growth inhibition by the PPAR agonist troglitazone. Chem Biol Interact,
188(1), 75-85.
Bellance, N., Lestienne, P., & Rossignol, R. (2009). Mitochondria: from bioenergetics
to the metabolic regulation of carcinogenesis. Front Biosci, 14, 4015-4034.
Benn, J., Su, F., Doria, M., & Schneider, R. J. (1996). Hepatitis B virus HBx protein
induces transcription factor AP-1 by activation of extracellular
signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J
Virol, 70(8), 4978-4985.
Bhat, R., Xue, Y., Berg, S., Hellberg, S., Ormo, M., Nilsson, Y., et al. (2003).
Structural insights and biological effects of glycogen synthase kinase
3-specific inhibitor AR-A014418. J Biol Chem, 278(46), 45937-45945.
Bilim, V., Ougolkov, A., Yuuki, K., Naito, S., Kawazoe, H., Muto, A., et al. (2009).
Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma.
Br J Cancer, 101(12), 2005-2014.
Block, T. M., Mehta, A. S., Fimmel, C. J., & Jordan, R. (2003). Molecular viral
oncology of hepatocellular carcinoma. Oncogene, 22(33), 5093-5107.
Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone
deacetylase inhibitors. Nat Rev Drug Discov, 5(9), 769-784.
Brouet, I., & Ohshima, H. (1995). Curcumin, an Anti-tumor Promoter and
Anti-inflammatory Agent, Inhibits Induction of Nitric Oxide Synthase in
Activated Macrophages. Biochemical and Biophysical Research
Communications, 206(2), 533-540.
Buckle, D. R., Rockell, C. J., Smith, H., & Spicer, B. A. (1986). Studies on
1,2,3-triazoles. 13. (Piperazinylalkoxy)
[1]benzopyrano[2,3-d]-1,2,3-triazol-9(1H)-ones with combined
H1-antihistamine and mast cell stabilizing properties. J Med Chem, 29(11),
2262-2267.
Budihardjo, I., Oliver, H., Lutter, M., Luo, X., & Wang, X. (1999). Biochemical
pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 15,
269-290.
Buscarini, L., Buscarini, E., Di Stasi, M., Vallisa, D., Quaretti, P., & Rocca, A. (2001).
Percutaneous radiofrequency ablation of small hepatocellular carcinoma:
long-term results. Eur Radiol, 11(6), 914-921.
Cagnol, S., & Chambard, J. C. (2010). ERK and cell death: mechanisms of
ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J,
277(1), 2-21.
Cao, J., Liu, Y., Jia, L., Zhou, H. M., Kong, Y., Yang, G., et al. (2007). Curcumin
induces apoptosis through mitochondrial hyperpolarization and mtDNA
damage in human hepatoma G2 cells. Free Radic Biol Med, 43(6), 968-975.
Center, M. M., & Jemal, A. (2011). International trends in liver cancer incidence rates.
Cancer Epidemiol Biomarkers Prev, 20(11), 2362-2368.
Chang, C.-P., Yang, M.-C., Liu, H.-S., Lin, Y.-S., & Lei, H.-Y. (2007). Concanavalin A
induces autophagy in hepatoma cells and has a therapeutic effect in a murine
in situ hepatoma model. Hepatology, 45(2), 286-296.
Chau, B. N., Cheng, E. H. Y., Kerr, D. A., & Hardwick, J. M. (2000). Aven, a Novel
Inhibitor of Caspase Activation, Binds Bcl-xL and Apaf-1. Molecular cell,
6(1), 31-40.
Chen, D.-S., Kuo, G. C., Sung, J.-L., Lai, M.-Y., Sheu, J.-C., Chen, P.-J., et al. (1990).
Hepatitis C Virus Infection in an Area Hyperendemic for Hepatitis B and
Chronic Liver Disease: The Taiwan Experience. Journal of Infectious Diseases,
162(4), 817-822.
Chen, J., Tang, X., Zhi, J., Cui, Y., Yu, H., Tang, E., et al. (2006). Curcumin protects
PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by
bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 11(6), 943-953.
Cheng, C. Y., Lin, Y. H., & Su, C. C. (2010). Curcumin inhibits the proliferation of
human hepatocellular carcinoma J5 cells by inducing endoplasmic reticulum
stress and mitochondrial dysfunction. Int J Mol Med, 26(5), 673-678.
Choi, M. J., Jung, K. H., Kim, D., Lee, H., Zheng, H. M., Park, B. H., et al. (2011).
Anti-cancer effects of a novel compound HS-113 on cell growth, apoptosis,
and angiogenesis in human hepatocellular carcinoma cells. Cancer Lett,
306(2), 190-196.
Choueiri, T. K., Schutz, F. A., Je, Y., Rosenberg, J. E., & Bellmunt, J. (2010). Risk of
arterial thromboembolic events with sunitinib and sorafenib: a systematic
review and meta-analysis of clinical trials. J Clin Oncol, 28(13), 2280-2285.
Coates, J. M., Galante, J. M., & Bold, R. J. (2010). Cancer therapy beyond apoptosis:
autophagy and anoikis as mechanisms of cell death. J Surg Res, 164(2),
301-308.
Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J, 326 ( Pt 1),
1-16.
Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009).
Cancer-related inflammation, the seventh hallmark of cancer: links to genetic
instability. Carcinogenesis, 30(7), 1073-1081.
Duvoix, A., Blasius, R., Delhalle, S., Schnekenburger, M., Morceau, F., Henry, E., et
al. (2005). Chemopreventive and therapeutic effects of curcumin. Cancer
Letters, 223(2), 181-190.
Duvoix, A., Morceau, F., Schnekenburger, M., Delhalle, S., Galteau, M. M., Dicato,
M., et al. (2003). Curcumin-induced cell death in two leukemia cell lines:
K562 and Jurkat. Ann N Y Acad Sci, 1010, 389-392.
Escudier, B., Eisen, T., Stadler, W. M., Szczylik, C., Oudard, S., Siebels, M., et al.
(2007). Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med,
356(2), 125-134.
Fischer, P. M., Glover, D. M., & Lane, D. P. (2004). Targeting the cell cycle. Drug
Discovery Today: Therapeutic Strategies, 1(4), 417-423.
Gauthier, A., & Ho, M. (2012). Role of sorafenib in the treatment of advanced
hepatocellular carcinoma: An update. Hepatology Research, n/a-n/a.
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., et al. (2000). Substituent effects on the antibacterial activity of
nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity
against the fastidious gram-negative organisms Haemophilus influenzae and
Moraxella catarrhalis. J Med Chem, 43(5), 953-970.
Goel, A., & Aggarwal, B. B. (2010). Curcumin, the golden spice from Indian saffron,
is a chemosensitizer and radiosensitizer for tumors and chemoprotector and
radioprotector for normal organs. Nutr Cancer, 62(7), 919-930.
Goel, A., & Aggarwal, B. B. (2010). Curcumin, the Golden Spice From Indian Saffron,
Is a Chemosensitizer and Radiosensitizer for Tumors and Chemoprotector and
Radioprotector for Normal Organs. [Article]. Nutrition & Cancer, 62(7),
919-930.
Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer:
role of ATP-dependent transporters. [10.1038/nrc706]. Nat Rev Cancer, 2(1),
48-58.
Green, A. S., Chapuis, N., Lacombe, C., Mayeux, P., Bouscary, D., & Tamburini, J.
(2011). LKB1/AMPK/mTOR signaling pathway in hematological
malignancies: from metabolism to cancer cell biology. Cell Cycle, 10(13),
2115-2120.
Hanahan, D., & Weinberg, Robert A. (2011). Hallmarks of Cancer: The Next
Generation. Cell, 144(5), 646-674.
Hartwell, L. H., & Kastan, M. B. (1994). Cell cycle control and cancer. Science,
266(5192), 1821-1828.
He, C., & Levine, B. (2010). The Beclin 1 interactome. Curr Opin Cell Biol, 22(2),
140-149.
Hill, M. M., Adrain, C., Duriez, P. J., Creagh, E. M., & Martin, S. J. (2004). Analysis of the composition, assembly kinetics and activity of native Apaf-1
apoptosomes. EMBO J, 23(10), 2134-2145.
Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O., & Woodgett, J. R. (2000).
Requirement for glycogen synthase kinase-3beta in cell survival and
NF-kappaB activation. Nature, 406(6791), 86-90.
Hour, T.-C., Chen, J., Huang, C.-Y., Guan, J.-Y., Lu, S.-H., & Pu, Y.-S. (2002).
Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer
cells by inducing p21WAF1/CIP1 and C/EBPβ expressions and suppressing
NF-κB activation. The Prostate, 51(3), 211-218.
Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., et al. (2006). TSC2
integrates Wnt and energy signals via a coordinated phosphorylation by
AMPK and GSK3 to regulate cell growth. Cell, 126(5), 955-968.
Jacobs, K. M., Bhave, S. R., Ferraro, D. J., Jaboin, J. J., Hallahan, D. E., & Thotala, D.
(2012). GSK-3beta: A Bifunctional Role in Cell Death Pathways. Int J Cell
Biol, 2012, 930710.
Je, Y., Schutz, F. A., & Choueiri, T. K. (2009). Risk of bleeding with vascular
endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and
sorafenib: a systematic review and meta-analysis of clinical trials. Lancet
Oncol, 10(10), 967-974.
Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V.,
et al. (1994). A cell cycle regulator potentially involved in genesis of many
tumor types. Science (New York, N.Y.), 264(5157), 436-440.
Kang, J., Chen, J., Shi, Y., Jia, J., & Zhang, Y. (2005). Curcumin-induced histone
hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol,
69(8), 1205-1213.
Kataoka, T., Schroter, M., Hahne, M., Schneider, P., Irmler, M., Thome, M., et al.
(1998). FLIP prevents apoptosis induced by death receptors but not by
perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J
Immunol, 161(8), 3936-3942.
Kerr, J. F., Winterford, C. M., & Harmon, B. V. (1994). Apoptosis. Its significance in
cancer and cancer therapy. Cancer, 73(8), 2013-2026.
Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer,
26(4), 239-257.
Kerr, J. F. R. (1972). Shrinkage necrosis of adrenal cortical cells. The Journal of
Pathology, 107(3), 217-219.
Kim, D.-H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R.,
Erdjument-Bromage, H., et al. (2002). mTOR Interacts with Raptor to Form a
Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery. Cell,
110(2), 163-175.
Kim, M. J., Kim, D. E., Jeong, I. G., Choi, J., Jang, S., Lee, J. H., et al. (2012). HDAC
inhibitors synergize antiproliferative effect of sorafenib in renal cell carcinoma
cells. Anticancer Res, 32(8), 3161-3168.
Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H.,
et al. (1995). Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins
form a death-inducing signaling complex (DISC) with the receptor. EMBO J,
14(22), 5579-5588.
Kiso, Y., Suzuki, Y., Watanabe, N., Oshima, Y., & Hikino, H. (1983). Antihepatotoxic
Principles of Curcuma longa Rhizomes1. Planta medica, 49(11), 185-187.
Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. [10.1038/nrc1692]. Nat Rev
Cancer, 5(9), 726-734.
Kroemer, G., & Jaattela, M. (2005). Lysosomes and autophagy in cell death control.
Nat Rev Cancer, 5(11), 886-897.
Kuan N, P. J. E. (1998). Apoptosis: Programmed cell death. Archives of Surgery,
133(7), 773-775.
Kuwana, T., & Newmeyer, D. D. (2003). Bcl-2-family proteins and the role of
mitochondria in apoptosis. Curr Opin Cell Biol, 15(6), 691-699.
Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., et al.
(2006). The Connectivity Map: using gene-expression signatures to connect
small molecules, genes, and disease. Science, 313(5795), 1929-1935.
Lencioni, R., Pinto, F., Armillotta, N., Bassi, A. M., Moretti, M., Di Giulio, M., et al.
(1997). Long-term results of percutaneous ethanol injection therapy for
hepatocellular carcinoma in cirrhosis: a European experience. Eur Radiol, 7(4),
514-519.
Lev-Ari, S., Starr, A., Vexler, A., Karaush, V., Loew, V., Greif, J., et al. (2006).
Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is
associated with increased apoptosis, down-regulation of COX-2 and EGFR
and inhibition of Erk1/2 activity. Anticancer Res, 26(6B), 4423-4430.
Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T., & Kuwano, H. (2009).
Inhibition of Autophagy by 3-MA Enhances the Effect of 5-FU-Induced
Apoptosis in Colon Cancer Cells. Annals of Surgical Oncology, 16(3),
761-771.
Li, J., Hou, N., Faried, A., Tsutsumi, S., Takeuchi, T., & Kuwano, H. (2009).
Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol, 16(3), 761-771.
Liang, C., & Jung, J. U. (2010). Autophagy genes as tumor suppressors. Current
Opinion in Cell Biology, 22(2), 226-233.
Liu, H. S., Ke, C. S., Cheng, H. C., Huang, C. Y., & Su, C. L. (2011).
Curcumin-induced mitotic spindle defect and cell cycle arrest in human
bladder cancer cells occurs partly through inhibition of aurora A. Mol
Pharmacol, 80(4), 638-646.
Liu, T., Kuljaca, S., Tee, A., & Marshall, G. M. (2006). Histone deacetylase inhibitors:
multifunctional anticancer agents. Cancer Treat Rev, 32(3), 157-165.
Llovet, J. M., Bruix, J., & Gores, G. J. (2000). Surgical resection versus
transplantation for early hepatocellular carcinoma: clues for the best strategy.
Hepatology, 31(4), 1019-1021.
Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J.-F., et al. (2008).
Sorafenib in Advanced Hepatocellular Carcinoma. New England Journal of
Medicine, 359(4), 378-390.
Llovet, J. M., Sala, M., Castells, L., Suarez, Y., Vilana, R., Bianchi, L., et al. (2000).
Randomized controlled trial of interferon treatment for advanced
hepatocellular carcinoma. Hepatology, 31(1), 54-58.
Macchiarulo, A., Costantino, G., Fringuelli, D., Vecchiarelli, A., Schiaffella, F., &
Fringuelli, R. (2002). 1,4-Benzothiazine and 1,4-benzoxazine imidazole
derivatives with antifungal activity: a docking study. Bioorg Med Chem,
10(11), 3415-3423.
Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell
death. Am J Pathol, 146(1), 3-15.
Manov, I., Pollak, Y., Broneshter, R., & Iancu, T. C. (2011). Inhibition of doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by
sorafenib--the role of extracellular signal-regulated kinase counteraction.
FEBS J, 278(18), 3494-3507.
McNally, S. J., Harrison, E. M., Ross, J. A., Garden, O. J., & Wigmore, S. J. (2007).
Curcumin induces heme oxygenase 1 through generation of reactive oxygen
species, p38 activation and phosphatase inhibition. Int J Mol Med, 19(1),
165-172.
Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy
fights disease through cellular self-digestion. [10.1038/nature06639]. Nature,
451(7182), 1069-1075.
Mulcahy, M. F. (2005). Management of hepatocellular cancer. Curr Treat Options
Oncol, 6(5), 423-435.
Nanji, A. A., Jokelainen, K., Tipoe, G. L., Rahemtulla, A., Thomas, P., & Dannenberg,
A. J. (2003). Curcumin prevents alcohol-induced liver disease in rats by
inhibiting the expression of NF-kappa B-dependent genes. American journal
of physiology. Gastrointestinal and liver physiology, 284(2), G321-327.
Newmeyer, D. D., Bossy-Wetzel, E., Kluck, R. M., Wolf, B. B., Beere, H. M., &
Green, D. R. (2000). Bcl-xL does not inhibit the function of Apaf-1. Cell
Death Differ, 7(4), 402-407.
Noda, T., & Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue,
controls autophagy in yeast. J Biol Chem, 273(7), 3963-3966.
Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D'Alessandro, N.
(2005). Antitumor effects of curcumin, alone or in combination with cisplatin
or doxorubicin, on human hepatic cancer cells. Analysis of their possible
relationship to changes in NF-kB activation levels and in IAP gene expression.
Cancer Lett, 224(1), 53-65.
Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., & D'Alessandro, N.
(2005). Antitumor effects of curcumin, alone or in combination with cisplatin
or doxorubicin, on human hepatic cancer cells. Analysis of their possible
relationship to changes in NF-kB activation levels and in IAP gene expression.
Cancer Letters, 224(1), 53-65.
Nurse, P., Masui, Y., & Hartwell, L. (1998). Understanding the cell cycle. Nat Med,
4(10), 1103-1106.
Okano, J.-i., Fujise, Y., Abe, R., Imamoto, R., & Murawaki, Y. (2011).
Chemoprevention against hepatocellular carcinoma. Clinical Journal of
Gastroenterology, 4(4), 185-197.
Ong, G. Y., Changchien, C. S., Lee, C. M., Wang, J. H., Tung, H. D., Chuah, S. K., et
al. (2004). Liver abscess complicating transcatheter arterial embolization: a
rare but serious complication. A retrospective study after 3878 procedures. Eur
J Gastroenterol Hepatol, 16(8), 737-742.
Ou, D. L., Shen, Y. C., Liang, J. D., Liou, J. Y., Yu, S. L., Fan, H. H., et al. (2009).
Induction of Bim expression contributes to the antitumor synergy between
sorafenib and mitogen-activated protein kinase/extracellular signal-regulated
kinase kinase inhibitor CI-1040 in hepatocellular carcinoma. Clin Cancer Res,
15(18), 5820-5828.
Ougolkov, A. V., Bone, N. D., Fernandez-Zapico, M. E., Kay, N. E., & Billadeau, D.
D. (2007). Inhibition of glycogen synthase kinase-3 activity leads to epigenetic
silencing of nuclear factor kappaB target genes and induction of apoptosis in
chronic lymphocytic leukemia B cells. Blood, 110(2), 735-742.
Panka, D. J., Cho, D. C., Atkins, M. B., & Mier, J. W. (2008). GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem,
283(2), 726-732.
Patt, Y. Z., Charnsangavej, C., Yoffe, B., Smith, R., Lawrence, D., Chuang, V., et al.
(1994). Hepatic arterial infusion of floxuridine, leucovorin, doxorubicin, and
cisplatin for hepatocellular carcinoma: effects of hepatitis B and C viral
infection on drug toxicity and patient survival. J Clin Oncol, 12(6),
1204-1211.
Pattingre, S., Espert, L., Biard-Piechaczyk, M., & Codogno, P. (2008). Regulation of
macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 90(2),
313-323.
Peng, C.-L., Guo, W., Ji, T., Ren, T., Yang, Y., Li, D.-S., et al. (2009). Sorafenib
induces growth inhibition and apoptosis in human synovial sarcoma cells via
inhibiting the RAF/MEK/ERK signaling pathway. Cancer Biology & Therapy,
8(18), 1729-1736.
Piwocka, K., Jaruga, E., Skierski, J., Gradzka, I., & Sikora, E. (2001). Effect of
glutathione depletion on caspase-3 independent apoptosis pathway induced by
curcumin in Jurkat cells. Free Radic Biol Med, 31(5), 670-678.
Qian, H., Yang, Y., & Wang, X. (2011). Curcumin enhanced adriamycin-induced
human liver-derived Hepatoma G2 cell death through activation of
mitochondria-mediated apoptosis and autophagy. European Journal of
Pharmaceutical Sciences, 43(3), 125-131.
Sa, G., & Das, T. (2008). Anti cancer effects of curcumin: cycle of life and death:
BioMed Central Ltd.
Sadzuka, Y., Nagamine, M., Toyooka, T., Ibuki, Y., & Sonobe, T. (2012). Beneficial
effects of curcumin on antitumor activity and adverse reactions of doxorubicin. Int J Pharm, 432(1-2), 42-49.
Sala, M., Varela, M., & Bruix, J. (2004). Selection of candidates with HCC for
transplantation in the MELD era. Liver Transpl, 10(10 Suppl 2), S4-9.
Scott, D. W., & Loo, G. (2004). Curcumin-induced GADD153 gene up-regulation in
human colon cancer cells. Carcinogenesis, 25(11), 2155-2164.
Scott, R. C., Schuldiner, O., & Neufeld, T. P. (2004). Role and regulation of
starvation-induced autophagy in the Drosophila fat body. Dev Cell, 7(2),
167-178.
Shackelford, D. B., & Shaw, R. J. (2009). The LKB1-AMPK pathway: metabolism
and growth control in tumour suppression. Nat Rev Cancer, 9(8), 563-575.
Shi, Y.-H., Ding, Z.-B., Zhou, J., Hui, B., Shi, G.-M., Ke, A.-W., et al. (2011).
Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma
via ER stress-related apoptosis. Autophagy, 7(10), 1159-1172.
Shinojima, N., Yokoyama, T., Kondo, Y., & Kondo, S. (2007). Roles of the
Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced
autophagy. Autophagy, 3(6), 635-637.
Sim, H. M., Lee, C. Y., Ee, P. L., & Go, M. L. (2008). Dimethoxyaurones: Potent
inhibitors of ABCG2 (breast cancer resistance protein). Eur J Pharm Sci, 35(4),
293-306.
Sinha, S., & Levine, B. (2008). The autophagy effector Beclin 1: a novel BH3-only
protein. Oncogene, 27 Suppl 1, S137-148.
Siwak, D. R., Shishodia, S., Aggarwal, B. B., & Kurzrock, R. (2005).
Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells
are associated with suppression of IkappaB kinase and nuclear factor kappaB
activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer, 104(4),
879-890.
Sreejayan, & Rao, M. N. A. (1997). Nitric Oxide Scavenging by Curcuminoids.
Journal of Pharmacy and Pharmacology, 49(1), 105-107.
Srivastava, K. C., Bordia, A., & Verma, S. K. (1995). Curcumin, a major component
of food spice turmeric (Curcuma longa) inhibits aggregation and alters
eicosanoid metabolism in human blood platelets. Prostaglandins, Leukotrienes
and Essential Fatty Acids, 52(4), 223-227.
Strumberg, D., Richly, H., Hilger, R. A., Schleucher, N., Korfee, S., Tewes, M., et al.
(2005). Phase I clinical and pharmacokinetic study of the Novel Raf kinase
and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in
patients with advanced refractory solid tumors. J Clin Oncol, 23(5), 965-972.
Syng-Ai, C., Kumari, A. L., & Khar, A. (2004). Effect of curcumin on normal and
tumor cells: role of glutathione and bcl-2. Mol Cancer Ther, 3(9), 1101-1108.
Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., & Kominami, E. (2005). Lysosomal
turnover, but not a cellular level, of endogenous LC3 is a marker for
autophagy. Autophagy, 1(2), 84-91.
Thayyullathil, F., Chathoth, S., Hago, A., Patel, M., & Galadari, S. (2008). Rapid
reactive oxygen species (ROS) generation induced by curcumin leads to
caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol
Med, 45(10), 1403-1412.
Thomas, P., Wang, Y. J., Zhong, J. H., Kosaraju, S., O'Callaghan, N. J., Zhou, X. F., et
al. (2009). Grape seed polyphenols and curcumin reduce genomic instability
events in a transgenic mouse model for Alzheimer's disease. Mutat Res,
661(1-2), 25-34. Uddin, S., Hussain, A. R., Manogaran, P. S., Al-Hussein, K., Platanias, L. C.,
Gutierrez, M. I., et al. (2005). Curcumin suppresses growth and induces
apoptosis in primary effusion lymphoma. Oncogene, 24(47), 7022-7030.
van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., &
Vandenabeele, P. (2002). The role of mitochondrial factors in apoptosis: a
Russian roulette with more than one bullet. Cell Death Differ, 9(10),
1031-1042.
Venkatesan, N. (1998). Curcumin attenuation of acute adriamycin myocardial toxicity
in rats. British Journal of Pharmacology, 124(3), 425-427.
Venkatesan, N., Punithavathi, D., & Arumugam, V. (2000). Curcumin prevents
adriamycin nephrotoxicity in rats. British Journal of Pharmacology, 129(2),
231-234.
Wang, L.-Y., Hatch, M., Chen, C.-J., Levin, B., You, S.-L., Lu, S.-N., et al. (1996).
Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan.
International Journal of Cancer, 67(5), 620-625.
Wang, S., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., et al.
(2010). Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora
kinase inhibitors. J Med Chem, 53(11), 4367-4378.
Wang, W.-Z., Cheng, J., Luo, J., & Zhuang, S.-M. (2008). Abrogation of G2/M arrest
sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Letters,
582(18), 2689-2695.
Wang, W. Z., Cheng, J., Luo, J., & Zhuang, S. M. (2008). Abrogation of G2/M arrest
sensitizes curcumin-resistant hepatoma cells to apoptosis. FEBS Lett, 582(18),
2689-2695.
Weinstein, I. B. (1996). Relevance of cyclin D1 and other molecular markers to cancer chemoprevention. J Cell Biochem Suppl, 25, 23-28.
Wolf, B. B., Schuler, M., Echeverri, F., & Green, D. R. (1999). Caspase-3 is the
primary activator of apoptotic DNA fragmentation via DNA fragmentation
factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem,
274(43), 30651-30656.
Wu, S., Chen, J. J., Kudelka, A., Lu, J., & Zhu, X. (2008). Incidence and risk of
hypertension with sorafenib in patients with cancer: a systematic review and
meta-analysis. Lancet Oncol, 9(2), 117-123.
Xiao, G. (2007). Autophagy and NF-κB: Fight for fate. Cytokine & Growth
Factor Reviews, 18(3–4), 233-243.
Xie, B., Wang, D. H., & Spechler, S. J. (2012). Sorafenib for treatment of
hepatocellular carcinoma: a systematic review. Dig Dis Sci, 57(5), 1122-1129.
Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S.,
et al. (2005). Curcumin inhibits formation of amyloid beta oligomers and
fibrils, binds plaques, and reduces amyloid in vivo. The Journal of biological
chemistry, 280(7), 5892-5901.
Yang, J., Takahashi, Y., Cheng, E., Liu, J., Terranova, P. F., Zhao, B., et al. (2010).
GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy
and cell death. J Cell Sci, 123(Pt 6), 861-870.
Yip-Schneider, M. T., Klein, P. J., Wentz, S. C., Zeni, A., Menze, A., & Schmidt, C. M.
(2009). Resistance to mitogen-activated protein kinase kinase (MEK)
inhibitors correlates with up-regulation of the MEK/extracellular
signal-regulated kinase pathway in hepatocellular carcinoma cells. J
Pharmacol Exp Ther, 329(3), 1063-1070.
Yoo, H. Y., Patt, C. H., Geschwind, J. F., & Thuluvath, P. J. (2003). The outcome of liver transplantation in patients with hepatocellular carcinoma in the United
States between 1988 and 2001: 5-year survival has improved significantly
with time. J Clin Oncol, 21(23), 4329-4335.
Yousefi, S., & Simon, H. U. (2009). Autophagy in cancer and chemotherapy. Results
Probl Cell Differ, 49, 183-190.
Yu, S., Shen, G., Khor, T. O., Kim, J. H., & Kong, A. N. (2008). Curcumin inhibits
Akt/mammalian target of rapamycin signaling through protein
phosphatase-dependent mechanism. Mol Cancer Ther, 7(9), 2609-2620.
Zheng, M., Ekmekcioglu, S., Walch, E. T., Tang, C. H., & Grimm, E. A. (2004).
Inhibition of nuclear factor-kappaB and nitric oxide by curcumin induces
G2/M cell cycle arrest and apoptosis in human melanoma cells. Melanoma Res,
14(3), 165-171.
Zhou, Y. Y., Wang, H. Y., Tang, Z. G., & Ma, D. L. (1984). [Two new formulae for
evaluating the effectiveness of drug combinations and the revision of Burgi's
and Jin's modified Burgi's formulae]. Zhongguo Yao Li Xue Bao, 5(4),
217-221.