研究生: |
謝伯楷 Po-Kai Hsieh |
---|---|
論文名稱: |
居家型移動機器人之軟硬體設計與控制 The Design and Control of Home Mobile Robots |
指導教授: |
呂藝光
Leu, Yih-Guang 王偉彥 Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 移動機器人 、全方向輪 、適應性學習法 |
英文關鍵詞: | Mobile robots, Omni-directional wheels, Adaptive learning approach |
論文種類: | 學術論文 |
相關次數: | 點閱:132 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為設計與研製一居家移動機器人之軟、硬體架構,希望本移動機器人能在動態且複雜的居家環境中,成為能自我引導與全方位移動的自主性移動機器人。在複雜且動態的居家境中,可藉著全方位移動機器人敏捷的行動能力,完成居家照護的工作。本研究主要完成整合與設計下列各部份軟硬體架構,包括:全方向輪的運動方式、DC連續旋轉馬達的控制、場域可程式化邏輯閘陣列(FPGA)、影像訊號之距離量測系統與五軸機器手臂的控制。
另外,本論文利用下列兩個實驗來驗證所研製的居家移動機器人的效能與可行性。第一個實驗為利用模糊控制器控制居家照護機器人的移動,以便執行抓取目標物的工作,進而完成使用者所指定將某一目標物移至另一地點的任務。第二個實驗是先利用以DNA為基礎的適應性學習法則模擬居家移動機器人完成自動導航任務,之後將其演化後的參數使用於所研製的居家移動機器人上並實際測試居家移動機器人的自動導航能力。
The objective of this thesis is to design and control a home mobile robot which is capable of the omni-directional and autonomous mobility in dynamic and complex environments. In narrow home environments, the mobile robot can perform nursing work by the ability of omni-directional mobility. This study includes the DC motor control of three omni-directional wheels, Field Programmable Gate Array (FPGA), the image-based distance measuring system and the control of a five-axis robotic arm.
In addition, two experiments are given to demonstrate the applicability and feasibility of the proposed home mobile robot. The first is that a fuzzy controller is used to control the mobility of the home mobile robot such that the robot can move an assigned object from one location to another. The second is that first, through simulation, the adaptive DNA-based learning approach is used in the home mobile robot navigation, and then using a simple experiment verifies the ability of the robot navigation.
[1] J. Aranda, A. Grau, and J. Climent, “Control Architecture for a Three-wheeled Roller Robot,” AMC’98-Coimbra. 5th International Workshop on Advanced Motion Control, pp. 518-523, July 1998.
[2] Robert L. Williams, II, Brian E. Carter, Paolo Gallina, and Giulio Rosati, “Dynamic Model With Slip for Wheeled Omnidirectional Robots,” IEEE Transactions on Robotics and Automation,, pp. 285-293, June 2002.
[3] K. S. Byun, S. J. Kim, and J. B. Song, “Design of a four omnidirectional mobile robot with variable wheel arrangement mechanism,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 720-725, May 2002.
[4] K. S. Byun and J. B. Song, “CVT Control of an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels for Energy Efficient Drive,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 503-508, September 2003.
[5] A. Hamdy and E. Badreddin, “Dynamic modeling of a wheeled mobile robot for identification, navigation and control,” Proc. IMACS Conf. Modeling and Control of Technol. Syst., pp. 119-128, 1992.
[6] R. Rajagopalan, “A generic kinematic formulation for wheeled mobile robots,” J. Robot. Syst., pp. 77-91, vol. 14, 1997.
[7] S. Shekhar, “Wheel rolling constraints and slip in mobile robots,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 2601-2607, vol. 3, 1997.
[8] R. Balakrishna and A. Ghosal, “Modeling of slip for wheeled mobile robots,” IEEE Trans. Robot. Automat., pp. 126-132, vol. 11, Feb. 1995.
[9] S. Scheding, G. Dissanayake, E. M. Nebot, and H. Durrant-Whyte, “Experiment in autonomous navigation of an underground mining vehicle,” IEEE Trans. Robot. Automat., pp. 85-95, vol. 15, Feb. 1999.
[10] K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” J. Intell. Robot. Syst., pp. 315-330, vol. 22, 1998.
[11] Y. Mori, E. Nakano, T. Takahashi, and K. Takayama, “Mechanism and running modes of new omnidirectional vehicle ODV9,” JSME Int. J., pp. 210-217, no. 1, vol. 42, 1999.
[12] S. L. Dickerson and B. D. Lapin, “Control of an omnidirectional robotic vehicle with mecanum wheels,” Proc. Nat. Telesystems Conf., pp. 323-328, vol. 1, 1991.
[13] M. Wada, “Virtual Link Model for Redundantly Actuated Holonomic Omnidirectional Mobile Robots,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 3202-3207, May 2006.
[14] L. A. Zadeh, “Fuzzy sets”, IEEE Trans. Information and Control 8, pp. 338-353, 1965.
[15] L. X. Wang and J. M. Mendel, “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least Squares Learning,” IEEE Trans. Neural Networks., pp. 807-814, no. 5, vol. 3, 1992.
[16] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-spline Membership Function (BMF) and Its Applications in Fuzzy-Neural Control,” IEEE Trans. Syst. Man, Cyber., pp.841-851, no. 5, vol. 25, 1995.
[17] Y. D. Kwon, J. M. Won and J. S. Lee, “Control of Mobile Robot by using Evolutionary Fuzzy Controller”, IEEE International Conference on Evolutionary Computation., pp. 422-427, 1998.
[18] C. F. Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by Neural Network and Genetic Algorithms”, IEEE Trans. Fuzzy Systems, pp.155-170, no. 2, vol. 10, 2002.
[19] W. A. Farag, V. H. Quintana, and G. Lamberttorres, “A Genetic-Based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems,” IEEE Trans. Neural Networks, pp. 756-767, no. 5, vol. 9, 1998.
[20] C. H. Wang, H. L. Liu, and C. T. Lin, “Dynamic Optimal Learning Rates of a Certain Class of Fuzzy Neural Networks and its Applications with Genetic Algorithm,” IEEE Trans. Syst. Man, Cyber. Part B., pp.467 -475, no. 3, vol. 31, June 2001.
[21] Y. Yuan, and H. Zhuang, “A Genetic Algorithm for Generating Fuzzy Classification Rules,” IEEE Trans. Fuzzy Sets and Systems, pp. 1-19, no. 1, vol. 84, November, 1996.
[22] T. L. Seng, M. B. Khalid, and R. Yusof, "Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm," IEEE Trans. Syst. Man, Cyber. Part B., pp.226-236, no. 2, vol. 29, 1999.
[23] Y. G. Leu, “DNA-Based Evolution Fuzzy-Neural Networks,” The 13th National Conference on Fuzzy Theory and Its Applications, 2005.
[24] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “DNA Coding Method and a Mechanism of Development for Acquisition of Fuzzy Control Rules,” IEEE International Conference on Fuzzy Systems, pp.2194-2200, 1996.
[25] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “The Effects of Combination of DNA Coding Method with Pseudo-Bacterial GA,” Proceedings of IEEE International Conference on Evolutionary Computation, pp. 285-290, 1997.
[26] Y. S Ding and L. H. Ren, “A new DNA-Based Evolutionary Algorithm with Application to the Design of Fuzzy Controllers,” Proceedings of the 2002 Congress on Evolutionary Computation, pp.1982-1987, 2002.
[27] Y. S Ding and L. H. Ren, “DNA Genetic Algorithm for Design of the Generalized Membership-Type Takagi-Sugeno Fuzzy Control System,” IEEE International Conference on Systems, Man, and Cybernetics, pp.3862-3867, 2000.
[28] C. C. De Wit, “Trends in mobile robot and vehicle control,” Control Problems in Robotics and Automation, pp. 151-175, 1998.
[29] J. Borenstein, H. R. Everett, and L. Feng, “Mobile Robot Positioning: Sensors and Techniques,” J. Robot. Syst., pp. 231-249, vol. 14, 1997.
[30] B. J. Choi and S. V. Sreenivasan, “Gross motion characteristics of artic¬ulated mobile robots with pure rolling capability on smooth uneven sur¬faces,” IEEE Trans. Robot. Automat., pp. 340-343, vol. 15, April 1999.
[31] A. Hamdy and E. Badreddin, “Dynamic modeling of a wheeled mobile robot for identification, navigation and control,” Proc. IMACS Conf. Modeling and Control of Technol. Syst., 1992, pp. 119-128.
[32] R. Rajagopalan, “A generic kinematic formulation for wheeled mobile robots,” J. Robot. Syst., pp. 77-91, vol. 14, 1997.
[33] S. Shekhar, “Wheel rolling constraints and slip in mobile robots,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 2601-2607, vol. 3, 1997.
[34] R. Balakrishna and A. Ghosal, “Modeling of slip for wheeled mobile robots,” IEEE Trans. Robot. Automat., pp. 126-132, vol. 11, 1995.
[35] S. Scheding, G. Dissanayake, E. M. Nebot, and H. Durrant-Whyte, “Ex¬periment in autonomous navigation of an underground mining vehicle,” IEEE Trans. Robot. Automat., vol. 15, pp. 85-95, February 1999.
[36] M. J. Jung, H. S. Kim, S. Kim, and J. H. Kim, “Omnidirectional Mobile Base OK-II,” Proc. IEEE Int. Conf. Robotics and Automation, pp. 3449-3454, vol. 4, 2000.
[37] K. L. Moore, M. Davidson, V. Bahl, S. Rich, and S. Jirgal, “Modeling and control of a six-wheeled autonomous robot,” Proc. American Control Conf., vol. 3, pp. 1483-1490, 2000.
[38] K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang, and T. Fukuda, “Feed¬back control of an omnidirectional autonomous platform for mobile ser¬vice robots,” J. Intell. Robot. Syst., pp. 315-330, vol. 22, 1998.
[39] G. Witus, “Mobility potential of a robotic 6-wheeled omnidirectional drive vehicle (ODV) with Z-axis and tire inflation control,” Proc. SPIE, pp. 106-114, vol. 4024, 2000.
[40] Y. Mori, E. Nakano, T. Takahashi, and K. Takayama, “Mechanism and running modes of new omnidirectional vehicle ODV9,” JSME Int. J., pp. 210-217, no. 1, vol. 42, 1999.
[41] http://kornylak.com/
[42] X. Claeys, J. Yi, L. Alvarez, R. Horowitz, and C. C. de Wit, “A Dy¬namic tire/road Friction Model for 3D Vehicle Control and Simulation,” Proc. IEEE Intelligent Transportation Systems, pp. 483-488, August 2001.
[43] C. C. Wong, Y. H. Lin, S. A. Lee and C. H.Tsai, ”GA-based Fuzzy System Design in FPGA for an Omni-directional Mobile Robot,” Journal of Intelligent and Robotic Systems, pp.327-377,2005.
[44] E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” Int. Journal of Man-Machine Studies, pp. 1-13, no. 1, vol. 7, 1975.
[45] 王文俊,“認識 Fuzzy-第二版“,全華科技圖書出版社,Oct. 1997。
[46] 汪惠健,“模糊理論與應用“,台灣培生教育出版股份有限公司,Nov. 2006。
[47] D. E. Goldberg, “Genetic Algorithm in Search Optimization and Machine Learning. Reading,” 1989.
[48] A. Homaifar and E. McCormick, “Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers using Genetic Algorithms,” IEEE Trans. Fuzzy Syst., pp. 129-139, no. 2, vol. 3, April 1995.
[49] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “Emergence of Effective Fuzzy Rules for Controlling Mobile Robots using DNA Coding Method,” IEEE International Conference on Evolutionary Computation., pp. 581-586, 1996.
[50] L. H. Ren and Y. S Ding, “Design of Fuzzy Control System by a new DNA-Based Immune Genetic Algorithm,” IEEE International Conference on Fuzzy Systems, pp. 244-247, 2001.
[51] T. Yoshikawa, T. Furuhashi, and Y. Uchikawa, “Emergence of Effective Fuzzy Rules for Controlling Mobile Robots using DNA Coding Method,” IEEE International Conference on Evolutionary Computation., pp. 581-586, 1996.
[52] http://www.playrobot.com/motro_driver/files/IG-52GM.pdf
[53] http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/hb25/List/0/SortField/4/ProductID/64/Default.aspx
[54] http://www.megawin.com.tw/D_DownloadShow.asp?ID=9
[55] 張義和、陳敵北,"例說8051",新文京開發出版股份有限公司,Apr. 2005。
[56] http://www.playrobot.com/robotics/production%20information/miniarm/u11013.html
[57] 友晶科技股份有限公司,http://www.terasic.com.tw/,2008年5月。
[58] http://www.klb.com.tw/chinese/main.htm
[59] http://www.duracell.com.tw/home.htm
[60] 鄭人齊,以影像訊號為基礎之距離與高度量測系統,輔仁大學電子工程學系,96。
[61] M. C. Lu, W. Y. Wang, and H. H. Lan, “Image-based height measuring system for Liquid or particles in tanks,” IEEE International Conference on Networking, Sensing and Control, pp. 24-29, vol. 1, 2004.
[62] T. H. Wang, M. C. Lu, C. C. Hsu, and Y. Y. Lu, “Image Ruler and Its Applications in Distance and Area Measurement,” WSEAS Transactions on Systems, pp.901-907, vol. 6, May 2007.
[63] W. Y. Wang, M. C. Lu, T. H. Wang, and C. P. Tsai, and Y. Y. Lu, “Image- and Robot-Based Distance and Area Measuring Method,” WSEAS Transactions on Systems, pp.914-919, vol. 6, May 2007.
[64] M. Baczynski and J. Baczynski, “Low cost pointing device for robotic systems,” IEEE International Conference on Industrial Technology, pp. 955-958, vol. 2, 2004.