研究生: |
羅恩豪 LO, Yan-Ho |
---|---|
論文名稱: |
相同訓練量之不同強度急性阻力運動對抑制控制之影響:事件關聯電位研究 The effects of different intensities of acute resistance exercise with the same training volume on inhibitory control: An event-related potential study |
指導教授: |
張育愷
Chang, Yu-Kai |
口試委員: |
洪聰敏
Hong, Tsung-Min 陳豐慈 Chen, Feng-Tzu 張育愷 Chang, Yu-Kai |
口試日期: | 2023/01/05 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 急性阻力運動 、抑制控制 、執行功能 、劑量反應 |
英文關鍵詞: | acute resistance exercise, inhibitory control, executive function, does-response |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300022 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
執行功能是一個高階的認知功能,它能由上而下控制低階認知功能,使人能夠有組織、計劃等能力,並監控複雜和目標導向的行為。過去研究顯示,執行功能與心理健康、生理健康、生活品質、工作成就、大腦健康和夫婦和諧有正向關聯。此功能被過去學者分為大三類別,分別為工作記憶、計劃能力、認知彈性和抑制控制,其中抑制控制能夠透過抑制和控制的過程,把分散到不同地方的注意力,集中在重要的事情上,因此它在執行功能上扮演著重要的角色。過去研究顯示,急性阻力運動對於抑制控制有正面的效果,但是對於其機制和處方還不清楚。因此,本研究目的為透過事件關聯電位 (ERP) 來探討不同強度急性阻力運動量對抑制控制之影響。我們假設在相同的訓練量下,中等強度的急性阻力運動會對抑制控制產生更大的正面影響。我們招募了74位年齡介乎18-25歲的年輕成年人,把參與者隨機分派到控制組、低強度運動組 (LI) 和中強度運動組 (MI)。訓練量相同,低強度運動組 (30% 1RM) 進行3組20次和中強度運動組 (60%1RM) 進行3組10次反覆次數的全身性動作 (史密斯胸推、史密斯划船、史密斯肩推、史密斯深蹲和史密斯硬舉),運動介入時間大約30-45分鐘,組間休息時間為2-3分鐘,進行動作的速度為向心收縮1秒和離心收縮2秒,而控制組為45分鐘的閱讀。所有的參與者於介入前和介入後15分鐘使用叫色測驗 (stroop test) 測量抑制控制。本研究結果顯示,在中強度組中,叫色測驗內的不一致情境反應時間短於控制組 (P<0.05),低強度組則沒有改變。血乳酸在運動組的介入後有顯著的上升 (P<0.05),並且上升的程度一樣,其中低強度組的後測前血乳酸比前測前高。沒有發現血乳酸有中介的效果。本研究總結相同訓練量的不同強度急性阻力運動可能對抑制控制有不同的效果。
Executive function is a top-down mental process that manages the basic cognitive function, powering people to organize, plan, and monitor complex, goal-oriented behaviors. It has been divided into 3 parts: working memory, planning, cognitive flexibility and inhibitory control. Inhibitory control is fundamental among those functions because it helps people allocate their attention correctly on the specific task by inhibiting stimuli and control of attention. According to previous studies, acute resistance exercise can positively affect inhibitory control, but with an unclear mechanism and exercise prescriptions. Therefore, the aim of the current study is to investigate the effect of acute resistance exercise at different intensities on inhibitory control by using the event-related potential (ERP). We hypothesize that moderate intensity of acute resistance exercise can better influence the inhibitory control under the same training volume. We recruited 74 young adults, aged 18-25 to participate and randomized them into 3 groups-------control group, low-intensity group and moderate-intensity group. The results of this study showed that in the moderate-intensity group, the incongruent situation reaction time in the stroop test was shorter than that in the control group (P<0.05), and there was no change in the low-intensity group. The blood lactic acid in the exercise group increased significantly after the intervention (P<0.05), and the degree of increase was the same, and the blood lactic acid in the low-intensity group was higher before the post-test than before the pre-test. Blood lactate was not found to have a mediating effect. This study concluded that different intensities of acute resistance exercise with the same training volume may affect inhibitory control differently.
ACSM. (2018). ACSM's Guidelines for Exercise Testing and Prescription. Wolters Kluwer. https://books.google.com.tw/books?id=m_L-jwEACAAJ
Ai, J.-Y., Chen, F.-T., Hsieh, S.-S., Kao, S.-C., Chen, A.-G., Hung, T.-M., & Chang, Y.-K. (2021). The Effect of Acute High-Intensity Interval Training on Executive Function: A Systematic Review. International Journal of Environmental Research and Public Health, 18(7), 3593. https://www.mdpi.com/1660-4601/18/7/3593
Aleman, A., & Torres-Alemán, I. (2009). Circulating insulin-like growth factor I and cognitive function: Neuromodulation throughout the lifespan. Progress in Neurobiology, 89(3), 256-265. https://doi.org/https://doi.org/10.1016/j.pneurobio.2009.07.008
Ando, S., Komiyama, T., Tanoue, Y., Sudo, M., Costello, J. T., Uehara, Y., & Higaki, Y. (2022). Cognitive Improvement After Aerobic and Resistance Exercise Is Not Associated With Peripheral Biomarkers. Front Behav Neurosci, 16, 853150. https://doi.org/10.3389/fnbeh.2022.853150
Aston-Jones, G., Rajkowski, J., & Cohen, J. (2000). Locus coeruleus and regulation of behavioral flexibility and attention. In Progress in Brain Research (Vol. 126, pp. 165-182). Elsevier. https://doi.org/https://doi.org/10.1016/S0079-6123(00)26013-5
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Ann N Y Acad Sci, 1118, 122-141. https://doi.org/10.1196/annals.1412.011
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65-94. https://doi.org/10.1037/0033-2909.121.1.65
Barkley, R. A. (1998). Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment, 2nd ed. Guilford Press.
Basso, J. C., & Suzuki, W. A. (2017). The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plasticity, 2, 127-152. https://doi.org/10.3233/BPL-160040
Best, J. R., & Miller, P. H. (2010). A Developmental Perspective on Executive Function [https://doi.org/10.1111/j.1467-8624.2010.01499.x]. Child Development, 81(6), 1641-1660. https://doi.org/https://doi.org/10.1111/j.1467-8624.2010.01499.x
Brown, T. E., & Landgraf, J. M. (2010). Improvements in executive function correlate with enhanced performance and functioning and health-related quality of life: evidence from 2 large, double-blind, randomized, placebo-controlled trials in ADHD. Postgrad Med, 122(5), 42-51. https://doi.org/10.3810/pgm.2010.09.2200
Brush, C. J., Olson, R. L., Ehmann, P. J., Osovsky, S., & Alderman, B. L. (2016). Dose-Response and Time Course Effects of Acute Resistance Exercise on Executive Function. J Sport Exerc Psychol, 38(4), 396-408. https://doi.org/10.1123/jsep.2016-0027
Chang, Y.-K., Erickson, K. I., Stamatakis, E., & Hung, T.-M. (2019). How the 2018 US Physical Activity Guidelines are a Call to Promote and Better Understand Acute Physical Activity for Cognitive Function Gains [journal article]. Sports Medicine. https://doi.org/10.1007/s40279-019-01190-x
Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54, 289-300. https://doi.org/10.1111/psyp.12784
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol, 31(5), 640-656. https://doi.org/10.1123/jsep.31.5.640
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068
Chang, Y. K., Tsai, C. L., Huang, C. C., Wang, C. C., & Chu, I. H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport, 17(1), 51-55. https://doi.org/10.1016/j.jsams.2013.02.007
Cho, H. S., Lee, W. S., Yoon, K. J., Park, S. H., Shin, H. E., Kim, Y. S., Chang, H., & Moon, H. Y. (2020). Lactate consumption mediates repeated high-intensity interval exercise-enhanced executive function in adult males. Physical Activity and Nutrition, 24(4), 15-23. https://doi.org/10.20463/pan.2020.0023
Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc, 41(7), 1510-1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c
Coco, M., Buscemi, A., Guerrera, C. S., Di Corrado, D., Cavallari, P., Zappalà, A., Di Nuovo, S., Parenti, R., Maci, T., Razza, G., Petralia, M. C., Perciavalle, V., & Perciavalle, V. (2020). Effects of a Bout of Intense Exercise on Some Executive Functions. Int J Environ Res Public Health, 17(3). https://doi.org/10.3390/ijerph17030898
Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P. H., Yanasak, N. E., Allison, J. D., & Naglieri, J. A. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health psychology, 30(1), 91.
Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64(1), 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Doma, K., Schumann, M., Sinclair, W. H., Leicht, A. S., Deakin, G. B., & Häkkinen, K. (2015). The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. European Journal of Applied Physiology, 115(8), 1789-1799. https://doi.org/10.1007/s00421-015-3159-z
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and science in sports and exercise, 48(6), 1197.
Dora, K., Suga, T., Tomoo, K., Sugimoto, T., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021). Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon, 7(2), e06261. https://doi.org/10.1016/j.heliyon.2021.e06261
Eakin, L., Minde, K., Hechtman, L., Ochs, E., Krane, E., Bouffard, R., Greenfield, B., & Looper, K. (2004). The marital and family functioning of adults with ADHD and their spouses. J Atten Disord, 8(1), 1-10. https://doi.org/10.1177/108705470400800101
El Hayek, L., Khalifeh, M., Zibara, V., Abi Assaad, R., Emmanuel, N., Karnib, N., El-Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Abou Haidar, E., Barmo, N., Jabre, V., Stephan, J. S., & Sleiman, S. F. (2019). Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). The Journal of Neuroscience, 39(13), 2369-2382. https://doi.org/10.1523/jneurosci.1661-18.2019
Engeroff, T., Niederer, D., Vogt, L., & Banzer, W. (2019). Intensity and workload related dose-response effects of acute resistance exercise on domain-specific cognitive function and affective response – A four-armed randomized controlled crossover trial. Psychology of Sport and Exercise, 43, 55-63. https://doi.org/https://doi.org/10.1016/j.psychsport.2018.12.009
Fabiani, M., Gratton, G., & Federmeier, K. (2009). Event-related brain potentials: methods, theory, and applications. Handbook of Psychophysiology, 85-119.
Fernandez, A. M., & Torres-Alemán, I. (2012). The many faces of insulin-like peptide signalling in the brain. Nature Reviews Neuroscience, 13(4), 225-239. https://doi.org/10.1038/nrn3209
Garber, J. R., Cobin, R. H., Gharib, H., Hennessey, J. V., Klein, I., Mechanick, J. I., Pessah-Pollack, R., Singer, P. A., & Woeber, K. A. (2012). Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract, 18(6), 988-1028. https://doi.org/10.4158/ep12280.Gl
Gentil, P., Fisher, J., & Steele, J. (2017). A Review of the Acute Effects and Long-Term Adaptations of Single- and Multi-Joint Exercises during Resistance Training. Sports Medicine, 47(5), 843-855. https://doi.org/10.1007/s40279-016-0627-5
Glenn, T. C., Martin, N. A., McArthur, D. L., Hovda, D. A., Vespa, P., Johnson, M. L., Horning, M. A., & Brooks, G. A. (2015). Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis. J Neurotrauma, 32(11), 811-819. https://doi.org/10.1089/neu.2014.3482
Gould, D., & Krane, V. (1992). The arousal–athletic performance relationship: Current status and future directions. In Advances in sport psychology. (pp. 119-142). Human Kinetics Publishers.
Gross, J. J., & Thompson, R. (2007). Emotion Regulation: Conceptual Foundations. Handbook of Emotion Regulation, 3-27.
Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites, 11(12), 813. https://www.mdpi.com/2218-1989/11/12/813
Hashimoto, T., Tsukamoto, H., Takenaka, S., Olesen, N. D., Petersen, L. G., Sørensen, H., Nielsen, H. B., Secher, N. H., & Ogoh, S. (2018). Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. The FASEB Journal, 32(3), 1417-1427. https://doi.org/https://doi.org/10.1096/fj.201700381RR
Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and Self-Control From a Dual-Systems Perspective. Perspectives on Psychological Science, 4(2), 162-176. https://doi.org/10.1111/j.1745-6924.2009.01116.x
Hsieh, S. S., Chueh, T. Y., Huang, C. J., Kao, S. C., Hillman, C. H., Chang, Y. K., & Hung, T. M. (2021). Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J Sports Sci, 39(1), 10-22. https://doi.org/10.1080/02640414.2020.1803630
Kahneman, D. (1973). Attention and effort (Vol. 1063). Citeseer.
Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., Rinne, J., Nuutila, P., & Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. J Physiol, 568(Pt 1), 323-332. https://doi.org/10.1113/jphysiol.2005.091355
Knuttgen, H. G. (2007). Strength training and aerobic exercise: comparison and contrast. J Strength Cond Res, 21(3), 973-978. https://doi.org/10.1519/r-505011.1
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24. https://doi.org/https://doi.org/10.1016/j.brainres.2010.03.091
Liu, S., Yu, Q., Li, Z., Cunha, P. M., Zhang, Y., Kong, Z., Lin, W., Chen, S., & Cai, Y. (2020). Effects of Acute and Chronic Exercises on Executive Function in Children and Adolescents: A Systemic Review and Meta-Analysis [Systematic Review]. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.554915
Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory [Article]. Behavioral and Brain Sciences, 39, Article e200. https://doi.org/10.1017/S0140525X15000667
Mather, M., Huang, R., Clewett, D., Nielsen, S. E., Velasco, R., Tu, K., Han, S., & Kennedy, B. L. (2020). Isometric exercise facilitates attention to salient events in women via the noradrenergic system. NeuroImage, 210, 116560.
https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.116560
McMorris, T., & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: a meta-analytical investigation. Brain Cogn, 80(3), 338-351. https://doi.org/10.1016/j.bandc.2012.09.001
Miller, H. V., Barnes, J., & Beaver, K. M. (2011). Self-control and health outcomes in a nationally representative sample. American journal of health behavior, 35(1), 15-27.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: A latent variable analysis. Cognitive psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
Mogharnasi, M., Taherichadorneshin, H., Papoli-Baravati, S., & Teymuri, A. (2018). Effects of upper-body resistance exercise training on serum nesfatin-1 level, insulin resistance, and body composition in obese paraplegic men. Disability and Health Journal, 12. https://doi.org/10.1016/j.dhjo.2018.07.003
Moreau, D., & Chou, E. (2019). The Acute Effect of High-Intensity Exercise on Executive Function: A Meta-Analysis. Perspect Psychol Sci, 14(5), 734-764. https://doi.org/10.1177/1745691619850568
Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus--norepinephrine system. Psychological Bulletin, 131(4), 510.
Oberste, M., Javelle, F., Sharma, S., Joisten, N., Walzik, D., Bloch, W., & Zimmer, P. (2019). Effects and Moderators of Acute Aerobic Exercise on Subsequent Interference Control: A Systematic Review and Meta-Analysis. Front Psychol, 10, 2616. https://doi.org/10.3389/fpsyg.2019.02616
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The Physical Activity Guidelines for Americans. JAMA, 320(19), 2020-2028. https://doi.org/10.1001/jama.2018.14854
Pinto, R. R., Karabulut, M., Poton, R., & Polito, M. D. (2018). Acute resistance exercise with blood flow restriction in elderly hypertensive women: haemodynamic, rating of perceived exertion and blood lactate. Clinical Physiology and Functional Imaging, 38(1), 17-24. https://doi.org/https://doi.org/10.1111/cpf.12376
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 118(10), 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
Price, O. J., Tsakirides, C., Gray, M., & Stavropoulos-Kalinoglou, A. (2019). ACSM Preparticipation Health Screening Guidelines: A UK University Cohort Perspective. Medicine & Science in Sports & Exercise, 51(5). https://journals.lww.com/acsm-msse/Fulltext/2019/05000/ACSM_Preparticipation_Health_Screening_Guidelines_.25.aspx
Riggs, N. R., Spruijt-Metz, D., Sakuma, K.-L., Chou, C.-P., & Pentz, M. A. (2010). Executive cognitive function and food intake in children. Journal of nutrition education and behavior, 42(6), 398-403.
Simões, R. P., Mendes, R. G., Castello, V., Machado, H. G., Almeida, L. B., Baldissera, V., Catai, A. M., Arena, R., & Borghi-Silva, A. (2010). Heart-Rate Variability and Blood-Lactate Threshold Interaction During Progressive Resistance Exercise in Healthy Older Men. The Journal of Strength & Conditioning Research, 24(5), 1313-1320. https://doi.org/10.1519/JSC.0b013e3181d2c0fe
Taylor Tavares, J. V., Clark, L., Cannon, D. M., Erickson, K., Drevets, W. C., & Sahakian, B. J. (2007). Distinct profiles of neurocognitive function in unmedicated unipolar depression and bipolar II depression. Biol Psychiatry, 62(8), 917-924. https://doi.org/10.1016/j.biopsych.2007.05.034
Tomoo, K., Suga, T., Sugimoto, T., Tanaka, D., Shimoho, K., Mok, E., Matsumoto, S., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2020). Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Physiological Reports, 8. https://doi.org/10.14814/phy2.14527
Tsai, C.-L., Ukropec, J., Ukropcová, B., & Pai, M.-C. (2018). An acute bout of aerobic or strength exercise specifically modifies circulating exerkine levels and neurocognitive functions in elderly individuals with mild cognitive impairment. NeuroImage: Clinical, 17, 272-284.
https://doi.org/https://doi.org/10.1016/j.nicl.2017.10.028
Tsai, C. L., Wang, C.-H., Pan, C.-Y., Chen, F.-C., Huang, T.-H., & Chou, F.-Y. (2014). Executive function and endocrinological responses to acute resistance exercise [Original Research]. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00262
Tsuk, S., Netz, Y., Dunsky, A., Zeev, A., Carasso, R., Dwolatzky, T., Salem, R., Behar, S., & Rotstein, A. (2019). The Acute Effect of Exercise on Executive Function and Attention: Resistance Versus Aerobic Exercise. Advances in cognitive psychology, 15(3), 208-215. https://doi.org/10.5709/acp-0269-7
Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T.,
Hashimoto, T., & Isaka, T. (2017a). An acute bout of localized resistance exercise can rapidly improve inhibitory control. PLOS ONE, 12(9), e0184075.
https://doi.org/10.1371/journal.pone.0184075
Tsukamoto, H., Suga, T., Takenaka, S., Takeuchi, T., Tanaka, D., Hamaoka, T., Hashimoto, T., & Isaka, T. (2017b). Impact of Exercise Intensity and Duration on Postexercise Executive Function. Medicine and science in sports and exercise, 49(4), 774-784. https://doi.org/10.1249/mss.0000000000001155
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016a). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224-230. https://doi.org/https://doi.org/10.1016/j.physbeh.2015.12.021
Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016b). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160, 26-34. https://doi.org/https://doi.org/10.1016/j.physbeh.2016.03.029
Tyndall, A. V., Clark, C. M., Anderson, T. J., Hogan, D. B., Hill, M. D., Longman, R. S., & Poulin, M. J. (2018). Protective Effects of Exercise on Cognition and Brain Health in Older Adults. Exercise and Sport Sciences Reviews, 46(4), 215-223. https://doi.org/10.1249/jes.0000000000000161
Unterrainer, J. M., & Owen, A. M. (2006). Planning and problem solving: From neuropsychology to functional neuroimaging. Journal of Physiology-Paris, 99(4-6), 308-317. https://doi.org/10.1016/j.jphysparis.2006.03.014
Valenzuela, P. L., Castillo-García, A., Morales, J. S., de la Villa, P., Hampel, H., Emanuele, E., Lista, S., & Lucia, A. (2020). Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Research Reviews, 62, 101108. https://doi.org/https://doi.org/10.1016/j.arr.2020.101108
van Hall, G., Stømstad, M., Rasmussen, P., Jans, Ø., Zaar, M., Gam, C., Quistorff, B., Secher, N. H., & Nielsen, H. B. (2009). Blood Lactate is an Important Energy Source for the Human Brain. Journal of Cerebral Blood Flow & Metabolism, 29(6), 1121-1129. https://doi.org/10.1038/jcbfm.2009.35
Wang, C. C., Alderman, B., Wu, C. H., Chi, L., Chen, S. R., Chu, I. H., & Chang, Y. K. (2019). Effects of Acute Aerobic and Resistance Exercise on Cognitive Function and Salivary Cortisol Responses. J Sport Exerc Psychol, 41(2), 73-81. https://doi.org/10.1123/jsep.2018-0244
Wang, D., Zhu, T., Chen, J., Lu, Y., Zhou, C., & Chang, Y. K. (2020). Acute Aerobic Exercise Ameliorates Cravings and Inhibitory Control in Heroin Addicts: Evidence From Event-Related Potentials and Frequency Bands. Front Psychol, 11, 561590. https://doi.org/10.3389/fpsyg.2020.561590
Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute Effects of Resistance Exercise on Cognitive Function in Healthy Adults: A Systematic Review with Multilevel Meta-Analysis. Sports Med, 49(6), 905-916. https://doi.org/10.1007/s40279-019-01085-x
Will Crescioni, A., Ehrlinger, J., Alquist, J. L., Conlon, K. E., Baumeister, R. F., Schatschneider, C., & Dutton, G. R. (2011). High trait self-control predicts positive health behaviors and success in weight loss. J Health Psychol, 16(5), 750-759. https://doi.org/10.1177/1359105310390247
Wu, C. H., Karageorghis, C. I., Wang, C. C., Chu, C. H., Kao, S. C., Hung, T. M., & Chang, Y. K. (2019). Effects of acute aerobic and resistance exercise on executive function: An ERP study. J Sci Med Sport, 22(12), 1367-1372. https://doi.org/10.1016/j.jsams.2019.07.009
Xie, C., Alderman, B. L., Meng, F., Ai, J., Chang, Y.-K., & Li, A. (2020). Acute High-Intensity Interval Exercise Improves Inhibitory Control Among Young Adult Males With Obesity [Original Research]. Frontiers in Psychology, 11(1291). https://doi.org/10.3389/fpsyg.2020.01291
Zhang, L., Chu, C.-H., Liu, J.-H., Chen, F.-T., Nien, J.-T., Zhou, C., & Chang, Y.-K. (2020). Acute coordinative exercise ameliorates general and food-cue related cognitive function in obese adolescents. Journal of Sports Sciences, 38(8), 953-960. https://doi.org/10.1080/02640414.2020.1737386