簡易檢索 / 詳目顯示

研究生: 陳育恩
Chen, Yu-En
論文名稱: APCVD製程應用於石墨烯/玻璃碳複合膜之製備
Preparation of graphene/glassy carbon composite films using an APCVD process
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 常壓化學汽相沉積法石墨層間化合物玻璃碳複合結構
英文關鍵詞: thermal-APCVD, graphite intercalation compounds, carbon structures
DOI URL: https://doi.org/10.6345/NTNU202203071
論文種類: 學術論文
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,利用熱裂解式常壓化學汽相沉積法(Thermal atmospheric pressure chemical vapor deposition, thermal-APCVD)與石墨層間化合物(Graphite intercalation compounds, GICs)的觸媒插層技術來進行碳複合膜之沉積,其組成為石墨烯與玻璃碳(Glassy carbon, GC)複合結構。以無氧銅(ASTM 10200, 純度99.97 %, 50 m)做為觸媒基板,當Ar/H2/CH4=500/10/2 sccm時可得I2D/IG比值為0.62的寡層石墨烯(Few-layers graphene, FLG)。再將石墨烯轉移至SiO2/Si的目標基板,以FLG當作基質材料(Host material),硝酸鐵為插層劑,並以陰離子型態之界面活性劑(MA)作為添加劑,在實驗中證實硝酸鐵及MA濃度皆與NxOy氣泡形成之插層反應有關;結果顯示,於1 M硝酸鐵濃度中加入0.6 g/ml的MA,溫度控制在65 °C,插層時間為24小時的參數條件時,可以得到最佳的Fe-GICs品質,此時拉曼分析階數指標(Stage index)為n=1,亦即FLG的每層皆是重摻雜鐵奈米顆粒(Nanoparticles, NPs),AFM測量Fe-GICs膜整體厚度為16.2 nm。後續在Ar/CH4/NH3=340/30/30 sccm的成長條件下持續30分鐘可得複合膜結構。最後將所得實驗結果之複合膜進行分析,首先在X-射線繞射分析下可以發現未出現尖銳的晶體衍射峰,而只在衍射角24~38°區間內出現饅頭型的非晶峰,此結果屬於非晶結構如玻璃;另外拉曼分析檢測在D峰值為1348 cm-1及G峰值為1588 cm-1,D峰值為石墨材料的無序結構,而G峰值代表C-C鍵的sp2碳系統,兩者得以驗證GC或微結晶石墨碳的存在。進一步使用XPS檢測,在高解析XPS (high resolution XPS)中的C1s峰值裡,可再詳細的分析出284 eV的特徵峰值,可發現僅有sp2的峰值並無sp3,從碳同素異性體的平面三角形相圖得知,結構模型 100% 為sp2結構時為GC且具有富勒烯相關的結構。最後透過TEM觀測及EDS分析該複合膜結構是由頂層及底層石墨烯包覆鐵觸媒顆粒形成的石墨烯/玻璃碳複合膜,生長排列成許多之接近球狀晶粒。實驗分析結果綜合上述可證實石墨層間化合物已經轉變為GC結構。

    In this study, we report a novel strategy to prepare graphene/ glassy carbon (GC) structures by modified graphite intercalation compounds (GICs) technology to grow the GC. Synthesis method of the graphene and GC is developed by thermal atmospheric pressure chemical vapor deposition (thermal-APCVD). To get a high quality few-layer graphene (FLG), the gas parameters of thermal-APCVD is used. The gas, Ar/H2/CH4, which is set at 500/10/2 sccm in the growth stage. In addition, in order to find the optimal conditions of the Fe-GICs, which shows the formation of acceptor-type stage-1 GICs. We apply ferric nitrate (Fe(NO3)3) with anionic surfactant (0.6 g/ml MA) to intercalate as host material consisting to dope graphene monolayers at 65 °C for 24 hr. The doping of the intercalation compounds (ICs) are analyzed by Raman scattering (Stage index n=1). The analyzed result shows that the grapheme has heavy doping, the thickness of the film is 16.2 nm by AFM. After that, with the use of the gas Ar/CH4/NH3 which is set at 340/30/30 sccm in the growth stage for 30 min. To sum up, the composite film was analyzed as experimental results. First, analyze the X-ray diffraction (XRD), it is found that only the bread-shaped amorphous peaks appears in the range of 24° to 38 °, which means amorphous crystal. Furthermore, Raman analysis shows that both D peak (1348 cm-1) and G peak (1588 cm-1) verify the presence of GC or microcrystalline graphite carbon. However, the GC is 100 % sp2. Therefore, the composite film was measured by high-resolution XPS (high resolution XPS). Only sp2 can be found from the peak at 284 eV measured by XPS. In order to further observe the composite film, the TEM images and EDX analysis of composite membrane showing the composite film structure is made up from graphene films that cover the GC top and bottom. We can conclude with certainty that we have successfully completed graphene/GC composite membrane.

    中文摘要 I Abstract III 總目錄 V 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 奈米碳材料的發展 3 1.3 玻璃碳材料簡介與之應用發展 6 1.4 研究動機與目的 8 1.5 論文架構 10 第二章 文獻回顧 11 2.1 石墨烯材料特性 11 2.2 石墨層間化合物簡介 14 2.2.1 石墨層間化合物之製備方法 19 2.3 石墨烯/奈米碳管複合膜製備 22 2.3.1 石墨烯上方直接複合奈米碳管 25 2.3.2 薄膜引導奈米碳管成長複合於石墨烯 31 2.3.3 三明治夾層結構 33 第三章 實驗設計與規劃 38 3.1 設計理念 38 3.2 實驗規劃 39 3.3 熱裂解式常壓化學汽相沉積法系統 42 3.4 石墨烯之製備及流程 45 3.5 CNTs合成GC之製備及流程 55 3.6 石墨烯/GC複合膜之製備及流程 59 3.7 儀器與設備 62 第四章 實驗結果與討論 68 4.1 基質材料石墨烯之討論 68 4.2 石墨烯層間化合物之討論 73 4.2.1 插層劑濃度對鐵奈米顆粒之影響 73 4.2.2 插層劑濃度與界面活性劑之評估 76 4.2.3 插層劑溫度與時間參數對插層之影響 88 4.3 石墨烯/層狀碳複合膜之討論 94 4.3.1 碳複合膜之SEM分析 95 4.3.2 碳複合膜之拉曼分析 98 4.3.3 碳複合膜之XRD分析 100 4.3.4 碳複合膜之XPS分析 101 4.3.5 碳複合膜之TEM及EDX分析 102 第五章 結論與未來展望 107 5.1 結論 107 5.2 未來展望 109 參考文獻 110

    1. F. Bonaccorso, J. Coraux, C. Ewels, G. Fiori, A. Ferrari, J. Gabriel, M. Garcia-Hernandez, J. Kinaret, M. Lemme, and D. Neumaier, "Graphene position paper," E-Nano Newsletter Special Issue, 2011.
    2. H. Choi, H. Kim, S. Hwang, M. Kang, D. W. Jung, and M. Jeon, "Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition," Scripta Materialia, Vol. 64, pp. 601-604, 2011.
    3. S. Chen, P. Chen, and Y. Wang, "Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries," Nanoscale, Vol. 3, pp. 4323-9, 2011.
    4. N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi, and J. S. Park, "Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors," Adv Mater, Vol. 25, pp. 6854-8, 2013.
    5. S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene," Advanced Functional Materials, Vol. 21, pp. 1338-1354, 2011.
    6. B. Garg, T. Bisht, and Y. C. Ling, "Graphene-Based Nanomaterials as Heterogeneous Acid Catalysts: A Comprehensive Perspective," Molecules, Vol. 19, pp. 14582-14614, 2014.
    7. E. S. Polsen, "Robust synthesis and continuous manufacturing of carbon nanotube forests and graphene films," 3566212 Ph.D., University of Michigan, Ann Arbor, 2013.
    8. http://www.meijo-nano.com/en/applications/use.html
    9. G. M. Jenkins and K. Kawamura, " Polymeric carbons: carbon fibre, glass and char," London: Cambridge University Press, 1976.
    10. E. Franklin, "Homogeneous and Heterogeneous Graphitization of Carbon," Nature, Vol. 177, pp.239-239, 1956.
    11. S. Ergun, V. H. Tiensuu, "Alicyclic structures in coals," Nature, Vol.183, pp. 1668-1670, 1959.
    12. D. F. R. Mildner and J. M. Carpenter, "On the short range atomic structure of non-crystalline carbon," Journal of non-crystalline Solids, Vol.47, pp. 391-402, 1982.
    13. G. M. Jenkins, K. Kawamura and L. L. Ban, "Formation and structure of polymeric carbons," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 327, No. 1571, 1972.
    14. P. J. F. Harris, "Fullerene-related structure of commercial glassy carbons," Philosophical Magazine, Vol. 84, pp. 3159-3167, 2004.
    15. S. Sharma, A. Sharma, Y. K.Cho and M. Madou, "Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon-MEMS and carbon-NEMS platforms," ACS applied materials & interfaces, Vol. 4, pp. 34-39, 2012.
    16. C. Wang, G. Jia, L.H. Taherabadi and M.J. Madou, "A novel method for the fabrication of high-aspect ratio C-MEMS structures," Journal of microelectromechanical systems, Vol. 14, pp. 348-358, 2005.
    17. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang and S.K. Banerjee, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, pp. 1312-1314, 2009.
    18. L. Meng, Z. Wang, J. Jiang, Y. Yang and J. Wang, "Defect healing of chemical vapor deposition graphene growth by metal substrate step," The Journal of Physical Chemistry C, Vol. 117, pp. 15260-15265, 2013.
    19. C. Gong, M. Acik, R.M. Abolfath, Y. Chabal and K. Cho, "Graphitization of graphene oxide with ethanol during thermal reduction," The Journal of Physical Chemistry C, Vol. 116, pp. 9969-9979, 2012.
    20. J.H. Chu, J. Kwak, S.-D. Kim, M.J. Lee, J.J. Kim, S. Park, J.-K. Choi, G.H. Ryu, K. Park, S.Y. Kim, J.H. Kim, Z. Lee, Y.-W. Kim and S.-Y. Kwon, "Monolithic graphene oxide sheets with controllable composition," Nature communications, Vol. 5, pp. 3383, 2014.
    21. A. Li, S. Zhang, B. Reznik, S. Lichtenberg, G. Schoch and O. Deutschmann, "Chemistry and kinetics of chemical vapor deposition of pyrolytic carbon from ethanol," Proceedings of the Combustion Institute, Vol. 33, pp. 1843-1850, 2011.
    22. P.M. Silenko, A.N. Shlapak, V.P. Afanas’ev, "Chemical vapor deposition of pyrolytic carbon on SiC Fibers," Inorganic materials, Vol. 42, pp. 287-291, 2006.
    23. Y. Lim, J.-I. Heo, M. Madou and H. Shin, "Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform," Nanoscale research letters, Vol. 8, pp. 492, 2013.
    24. K. Malladi, C. Wang and M. Madou, "Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis," Carbon, Vol. 44, pp. 2602-2607, 2006.
    25. Y. Lim, Y. Lee, J.-I. Heo and H. Shin, "Highly sensitive hydrogen gas sensor based on a suspended palladium/carbon nanowire fabricated via batch microfabrication processes," Sensors and Actuators B: Chemical, Vol. 210, pp. 218-224, 2015.
    26. Y. Lim, J.-I. Heo and H. Shin, "Fabrication and application of a stacked carbon electrode set including a suspended mesh made of nanowires and a substratebound planar electrode toward for an electrochemical/biosensor platform," Sensors and Actuators B: Chemical, Vol. 192, pp. 796-803, 2014.
    27. G. Aichmayr, G.S. Duesberg, F. Kreupl, S. Kudelka, M. Liebau, A. Saenger,J. Schumann and O. Storbeck, "Carbon/high-k trench capacitor for the 40 nm DRAM generation," In VLSI Technology, 2007 IEEE Symposium on IEEE, pp. 186-187, 2007.
    28. F. Kreupl, R. Bruchhaus, P. Majewski, J.B. Philipp, R. Symanczyk, T. Happ, C. Arndt, M. Vogt, R. Zimmermann, A. Buerke, A.P. Graham and M. Kund, "Carbonbased resistive memory," In Electron Devices Meeting 2008 IEEE International, pp. 1-4, 2008.
    29. G. Raghavan, J.L. Hoyt and J.F. Gibbons, "Polycrystalline carbon: a novel material forgate electrodes in MOS technology," Japanese journal of applied physics, Vol. 32, pp. 380-383, 1993.
    30. A.P. Graham, G. Schindler, G.S. Duesberg, T. Lutz and W. Weber, "An investigation of the electrical properties of pyrolytic carbon in reduced dimensions: vias and wires," Journal of Applied Physics, Vol. 107, 114316, 2010.
    31. J. L. Xie, C. X. Guo, and C. M. Li, "Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage," Energy & Environmental Science, Vol. 7, pp. 2559-2579, 2014.
    32. A. N. Pal and A. Ghosh, "Ultralow noise field-effect transistor from multilayer graphene," Applied Physics Letters, vol. 95, 2009.
    33. 劉志毅,吳奕寬,張駿晟和曾永華,"從超薄石墨膜至原子層石墨烯:光電特性及應用",真空科技,26版,25-34頁,2013年。
    34. M. S. Dresselhaus and G. Dresselhaus, "Intercalation compounds of graphite," Advances in Physics, Vol. 51, pp. 1-186, 2002.
    35. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, "Production and processing of graphene and 2d crystals," Materials Today, Vol. 15, pp. 564-589, 2012.
    36. M. Noel and R. Santhanam, "Electrochemistry of graphite intercalation compounds," Journal of Power Sources, Vol. 72, pp. 53-65, 1998.
    37. H. P. Boehm, R. Setton, and E. Stumpp, "Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994)," in Pure and Applied Chemistry, Vol. 66, ed, p. 1893, 1994.
    38. 何歡,"氯化鐵-NiCl-GICs的製備,插層過程及還原工藝的研究",湖南大學碩士論文,2008年。
    39. 胡憲霖,翁震灼,黃振東"高導熱柔性石墨片之發展與應用," 工業材料雜誌,239期,119-126頁,2011年。
    40. N. Usha, V. R. K. Murthy, and J. Sobhanadri, "Optical and Low-Frequency Conductivity Measurements on Pure and Mixed Stages of Graphite-Ferric Chloride Intercalation Compound," Materials Science and Engineering B-Solid State Materials for Advanced Technology, Vol. 33, pp. 212-216, 1995.
    41. D. M. Ottmers and H. F. Rase, "Potassium Graphites Prepared by Mixed-Reaction Technique," Carbon, Vol. 4, pp. 125, 1966.
    42. N. Iwashita and M. Inagaki, "Potential survey of intercalation of sulfuric acid into graphite by chemical oxidation," Synthetic Metals, Vol. 34, pp. 139-144, 1989.
    43. V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, "X-Ray-Investigation of Highly Saturated Li-Graphite Intercalation Compound," Carbon, Vol. 33, pp. 177-181, 1995.
    44. 稻垣道夫,大谷杉郎,大谷朝男和賴耿陽,碳材料碳纖維工學,復漢出版社,2000。
    45. W. Zhao, P. H. Tan, J. Liu, and A. C. Ferrari, "Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability," J Am Chem Soc, Vol. 133, pp. 5941-6, 2011.
    46. G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, "Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage," Nano Lett, Vol. 8, pp. 3166-70, 2008.
    47. 趙冬梅,"石墨烯/奈米碳管複合材料的製備及應用進展",化學學報,72版,185頁,2014。
    48. J. Lin, C. Zhang, Z. Yan, Y. Zhu, Z. Peng, R. H. Hauge, D. Natelson, and J. M. Tour, "3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance," Nano Lett, Vol. 13, pp. 72-8, 2013.
    49. P. Dong, Y. Zhu, J. Zhang, F. Hao, J. Wu, S. Lei, H. Lin, R. H. Hauge, J. M. Tour, and J. Lou, "Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells," J. Mater. Chem. A, Vol. 2, pp. 20902-20907, 2014.
    50. X. Zhu, G. Q. Ning, Z. J. Fan, J. S. Gao, C. M. Xu, W. Z. Qian, and F. Wei, "One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles," Carbon, Vol. 50, pp. 2764-2771, 2012.
    51. K. Youn-Su, K. Kitu, T. F. Frank, and Y. Eui-Hyeok, "Out-of-plane growth of CNTs on graphene for supercapacitor applications," Nanotechnology, Vol. 23, pp. 015301, 2012.
    52. S. M. Shinde, G. Kalita, S. Sharma, R. Papon, M. Z. Yusop, and M. Tanemura, "Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source," RSC Advances, Vol. 4, pp. 13355-13360, 2014.
    53. Y. T. Shih, K. Y. Lee, and Y. S. Huang, "Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene," Applied Surface Science, Vol. 294, pp. 29-35, 2014.
    54. R. H. Rao, G. G. Chen, L. M. R. Arava, K. Kalaga, M. Ishigami, T. F. Heinz, P. M. Ajayan, and A. R. Harutyunyan, "Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes," Scientific Reports, Vol. 3, 2013.
    55. D. D. Nguyen, N. H. Tai, S. Y. Chen, and Y. L. Chueh, "Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters," Nanoscale, Vol. 4, pp. 632-8, 2012.
    56. S. W. Hong, F. Du, W. Lan, S. Kim, H. S. Kim, and J. A. Rogers, "Monolithic integration of arrays of single-walled carbon nanotubes and sheets of graphene," Adv Mater, Vol. 23, pp. 3821-6, 2011.
    57. H. C. Chang, C. C. Li, S. F. Jen, C. C. Lu, I. Y. Y. Bu, P. W. Chiu, and K. Y. Lee, "All-carbon field emission device by direct synthesis of graphene and carbon nanotube," Diamond and Related Materials, Vol. 31, pp. 42-46, 2013.
    58. S. S. Li, Y. H. Luo, W. Lv, W. J. Yu, S. D. Wu, P. X. Hou, Q. H. Yang, Q. B. Meng, C. Liu, and H. M. Cheng, "Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells," Advanced Energy Materials, Vol. 1, pp. 486-490, 2011.
    59. C. Srinivasan and R. Saraswathi, "Covalently bonded carbon nanotube–graphene hybrid material," CURRENT SCIENCE, Vol. 104, p. 166, 2013.
    60. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, "Preparation of Tunable 3D Pillared Carbon Nanotube–Graphene Networks for High-Performance Capacitance," Chemistry of Materials, Vol. 23, pp. 4810-4816, 2011.
    61. L. L. Zhang, Z. Xiong, and X. S. Zhao, "A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance," Journal of Power Sources, Vol. 222, pp. 326-332, 2013.
    62. H. J. Huang, H. Q. Chen, D. P. Sun, and X. Wang, "Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells," Journal of Power Sources, Vol. 204, pp. 46-52, 2012.
    63. U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, G. H. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, "Graphene/carbon nanotube hybrid-based transparent 2D optical array," Adv Mater, Vol. 23, pp. 3809-14, 2011.
    64. H. Kim, C. Mattevi, M. R. Calvo, J. C. Oberg, L. Artiglia, S. Agnoli, C. F. Hirjibehedin, M. Chhowalla, and E. Saiz, "Activation energy paths for graphene nucleation and growth on Cu," ACS Nano, Vol. 6, pp. 3614-23, 2012.
    65. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, "Model of carbon nanotube growth through chemical vapor deposition," Chemical Physics Letters, Vol. 315, pp. 25-30, 1999.
    66. C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, Vol. 21, p. 3324, 2011.
    67. K. Wieczorek-Ciurowa and A. J. Kozak, "The Thermal Decomposition of Fe(NO3)3·9H2O," Journal of Thermal Analysis and Calorimetry, Vol. 58, pp. 647-651, 1999.
    68. X. Li, G. X. Zhu, and Z. Xu, "Nitrogen-doped carbon nanotube arrays grown on graphene substrate," Thin Solid Films, Vol. 520, pp. 1959-1964, 2012.
    69. A. Kovalenko, J. Jouhannaud, P. Polavarapu, M. P. Krafft, G. Waton, and G. Pourroy, "Hollow magnetic microspheres obtained by nanoparticle adsorption on surfactant stabilized microbubbles," Soft Matter, Vol. 10, pp. 5147-56, 2014.
    70. J. Robertson, "Diamond-like amorphous carbon." Materials Science and Engineering: R: Reports, Vol. 37, pp. 129-281, 2002.

    無法下載圖示 本全文未授權公開
    QR CODE