研究生: |
張庭瑜 Chang, Ting-Yu |
---|---|
論文名稱: |
利用理論計算探討金屬團簇還原二氧化碳的催化反應 A Mechanistic Study of The Catalytic Reaction about Carbon Dioxide Reduction |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
口試委員: |
蔡明剛
Tsai, Ming-Kang 張鈞智 Chang, Chun-Chih 葉丞豪 Yeh, Chen-Hao |
口試日期: | 2024/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 二氧化碳還原 、金屬團簇 、密度泛函理論 、催化反應 、活化能 |
英文關鍵詞: | carbon dioxide reduction, metal clusters, density functional theory, catalytic reaction, activation energy |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401780 |
論文種類: | 學術論文 |
相關次數: | 點閱:72 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳(CO₂)還原反應在減少溫室氣體排放和生產可再生能源方面具有重要意義,由於CO₂分子本身的高穩定性,使其還原過程具有挑戰性。本研究利用理論計算方法,探討了金屬團簇在CO₂還原反應中的催化性能,選擇了幾種具有潛在催化能力的金屬團簇,如鈀(Pd)、和鈷(Co)等金屬,並對其結構和電子性質進行了密度泛函理論(DFT)計算,比較不同團簇與CO₂分子的吸附能及反應路徑,發現這些團簇在特定條件下能夠有效地活化CO₂分子。接著,研究了CO₂在這些金屬團簇表面的還原反應機理,並計算了各步驟的吸附能,結果顯示,Pd和Co團簇在還原CO₂的過程中都具有較高的催化活性,研究結果表明,適當的表面修飾和反應條件可以進一步提升金屬團簇的催化活性和選擇性。
總結來說,本研究通過理論計算證明了金屬團簇在CO₂還原反應中的潛在應用價值,為設計高效、選擇性的CO₂還原催化劑提供了重要的理論依據。
The reduction of carbon dioxide (CO₂) is of significant importance for reducing greenhouse gas emissions and producing renewable energy. However, the high stability of CO₂ molecules makes the reduction process challenging. This study utilizes theoretical calculations to investigate the catalytic performance of metal clusters in the CO₂ reduction reaction. We selected several metal clusters with potential catalytic abilities, such as palladium (Pd) and cobalt (Co), and conducted density functional theory (DFT) calculations on their structures and electronic properties. By comparing the adsorption energies and reaction pathways of different clusters with CO₂ molecules, we found that these clusters can effectively activate CO₂ molecules under specific conditions. Subsequently, we studied the reduction reaction mechanism of CO₂ on the surfaces of these metal clusters and calculated the adsorption energies of each step. The results show that both Pd and Co clusters exhibit high catalytic activity in the reduction of CO₂. The study indicates that appropriate surface modifications and reaction conditions can further enhance the catalytic activity and selectivity of metal clusters.
In summary, this study demonstrates the potential application value of metal clusters in the CO₂ reduction reaction through theoretical calculations, providing important theoretical support for designing efficient and selective CO₂ reduction catalysts.
1. Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, Liu H, Dou S. Metal-Free Carbon Materials for CO2Electrochemical Reduction. Adv Mater. 2017
2. Gasteiger, H. A., et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B: Environmental, 2005.
3. Liu, J., et al. Electrochemical Nitrogen Reduction Reaction on Two-Dimensional Materials. ACS Nano, 2019.
4. Fang, X., et al. Electrochemical reduction of nitro compounds: Recent advances and perspectives. Chemical Society Reviews, 2015.
5. Jiang, H., et al. Electrochemical Hydrogenation of Olefins over Transition Metal Catalysts: From Fundamentals to Applications. Accounts of Chemical Research, 2021.
6. Turner, J. A. A Realizable Renewable Energy Future. Science, 1999.
7. Katsutoshi Sato et al. Trends in Electrocatalytic CO2 Reduction (Advanced Materials, 2020)
8. Saha P, Amanullah S, Dey A. Selectivity in Electrochemical CO2 Reduction. Acc Chem Res. 2022 Jan 18;55(2):134-144.
9. Electrocatalytic CO2 and HCOOH interconversion on Pd-based catalyst. ASEM, 2022, 1, 100007.
10. Pisarev, Alexander A. Hydrogen adsorption on the surface of metals. (2012).
11. Hudlický, Miloš. Reductions in Organic Chemistry. Washington, D.C.: American Chemical Society. 1996: 429.
12. Wang, Q., Zhang, L., et al. Palladium-Copper Bimetallic Catalysts for Electrochemical CO2 Reduction to Ethanol. Angewandte Chemie International Edition, 2021.
13. Zhang, X., et al. Palladium-based catalysts for CO₂ reduction: A review. Chemical Reviews, 2020, 120(16).
14. Liu, S., et al. Mechanical Properties and Thermal Stability of Palladium-Based Catalysts. Advanced Materials, 2021, 33(11).
15. Wang, J., et al. Comparative study of cobalt and palladium catalysts for the hydrogenation of CO₂. Journal of Catalysis, 2020, 389, pp. 300-309.
16. D. Home, et al. Quantum Superposition: Counterintuitive Consequences of Coherence, Entanglement, and Interference. Physics Reports, 1997, 225(5), pp. 287-385.
17. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Entanglement: The Interplay of Quantum Mechanics and Information Theory. Reviews of Modern Physics, 2009, 81(2), pp. 865-942.
18. R. Shankar. et al. Principles of Quantum Mechanics. Springer, 2013.
19. E. Schrödinger. et al. Quantentheorie der Naturwissenschaften. Annalen der Physik, 1926, 79, pp. 361-376.
20. D. J. Griffiths. Introduction to Quantum Mechanics. Pearson, 2016.
21. N. Mardirossian, M. Head.Gordon, and M. Marques. Understanding Density Functional Theory Annual Review of Physical Chemistry, 2014, 65, 37.
22. Jensen, F. (2007). Introduction to Computational Chemistry. Wiley.
23. Mulliken, R. S. et al. (1955). Electronic Population Analysis on LCAO–MO Molecular Wave Functions. The Journal of Chemical Physics, 23(10), 1833-1840.
24. Warshel, A., & Levitt, M. (1976). Theoretical Studies of Enzymatic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. Journal of Molecular Biology, 103(2), 227-249.
25. Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104.
26. M. J. Frisch et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
27. Martin, Jan M.L. , Thermochemistry of molecules: enthalpies, entropies, and heat capacities of polyatomic species. Journal of Physical Chemistry A Parthiban.
28. A. C. Dillon, T. R. Cundari., Theoretical study of transition states and reaction pathways Chemical Reviews.
29. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T. L. Windus. Accurate and efficient Gaussian basis sets for atoms Rb to Xe. Journal of Chemical Information and Modeling, 2007, 47, 1045-1052
30. P. J. Hay, W. R. Wadt. A New Basis Set for Molecular Quantum Mechanics. Journal of Chemical Physics, 1985, 82, 299-310
31. P. J. Hay, W. R. Wadt. Gaussian Basis Sets for Molecular Calculations. Journal of Physical Chemistry A, 1985, 82, 270-283
32. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL. Basis set exchange: a community database for computational sciences. J Chem Inf Model. 2007 May-Jun;47(3):1045-52.
33. Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. Journal of Chemical Physics, 82(1), 270-283.
34. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64(4), 1045-1097.
35. Feynman, R. P., Hibbs, A. R., & Styer, D. F. (2010). Quantum Mechanics and Path Integrals. Physics Today, 63(11), 57-59.
36. Nishimura, S. (2001). Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley-Interscience.
37. Suzuki, A. (1999). Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995-1998. Journal of Organometallic Chemistry, 576(1-2), 147-168.
38. Heck, R. F. (1968). The addition of alkyl- and arylpalladium chlorides to olefins. Journal of the American Chemical Society, 90(20), 5518-5526.