簡易檢索 / 詳目顯示

研究生: 王敬瑋
Wang, Ching-Wei
論文名稱: 在快速旋轉下非共振雷德堡玻色愛因斯坦凝聚態的渦漩結構-在李黃楊量子修正項的作用下
Vortex structures in a rotating Rydberg-dressed Bose-Einstein condensate with Lee-Huang-Yang quantum correction
指導教授: 吳文欽
Wu, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 38
英文關鍵詞: Vortex lattice, Rydberg-dressed BEC, Lee-Huang-Yang quantum correction, trapping effect
DOI URL: http://doi.org/10.6345/NTNU202100363
論文種類: 學術論文
相關次數: 點閱:233下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Motivated by recent success of the Lee-Huang-Yang (LHY) quantum correction on dipolar condensates, I numerically studied a fast rotating quasi-two-dimensional Rydberg-dressed Bose-Einstein condensate (BEC) where LHY correction has been taken into account. In a rotating Rydberg-dressed BEC of reduced dimensionality, I show that there is room to tune the LHY coupling against the long- and short-range interactions. The competition between the LHY coupling and the long-/short-range interaction then results in rich phase diagrams for the vortex lattice structures. Most of results can be deemed in the context of superfluid (SF)-supersolid (SS) transition. In particular, I propose that trapping effect of the SS triangles or grids can lead to the clustering of multiple vortices. I have provided a way to estimate the number of vortices clustered in the SS lattice.

    Abstract i Declaration ii Acknowledgement iii Table of Contents v Chapter 1. Introduction 1.1 Historical overview 1 1.2 Motivation of the thesis 3 1.3 Overview of the thesis 5 Chapter 2. Themes and Related Topics 2.1 Vortex lattice in type-II superconductors 6 2.2 Gross-Pitaevskii equation 7 2.3 Rydberg-dressed BEC 8 2.4 LHY quantum correction 10 2.5 Vortex lattice in Rydberg-dressed BEC: Literature Search 11 Chapter 3. Formalism and Simulation 3.1 Formalism 13 3.2 Reduced dimensionality 14 3.3 Numerical methods 15 Chapter 4. Results and Discussions 4.1 Vortex lattices without LHY corrections 4.1.1 The TF regime 17 4.1.2 The vortex lattices 18 4.2 Vortex Structures with LHY correction 4.2.1 Roton instability 19 4.2.2 Clustering of multiple vortices 20 4.2.3 Effect of contact interaction 25 Chapter 5. Conclusions and Future Prospects 5.1 Conclusions 27 5.2 Future Prospects 27 Appendix A: Lattice parameter of Rydberg-dressed SS 28 References 31

    References
    [1] Bose, S. N. (1924) Plancks gesetz und Lichtquantenhypothese. Zeitsshrift fur Physik, 26,178-181.
    [2] Einstein, A. (1925) Quantentheorie de Einatomigen Idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1, 3-14.
    [3] Thorndike, A. S. & Evans, J. (2007) Quantum Mechanics at the Crossroads: New Perspectives from history, Philosophy, and Physics. Springer, Berlin.
    [4] Lévy, L.-P. (2000b). Ginzburg-Landau Theory. In Magnetism and Superconductivity (pp. 285–307). Springer Berlin Heidelberg.
    [5] Pethick, C. J., & Smith, H. (2008). Bose–Einstein Condensation in Dilute Gases. Cambridge University Press.
    [6] Kapitza, P. (1938) Viscosity of Liquid Helium Below the λ-point. Nature, 141, 74.
    [7] London, F. (1938) The λ-phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. IJI.
    [8] Onsager, L. (1949). Statistical hydrodynamics. Il Nuovo Cimento, S2, 279–287.
    [9] Feynman, R. P. (1955). Chapter II Application of Quantum Mechanics to Liquid Helium. In Progress in Low Temperature Physics (pp. 17–53). Elsevier.
    [10] TISZA, L. (1938). Transport Phenomena in Helium II. Nature, 3577, 913–913.
    [11] Landau, L. (1941). Theory of the Superfluidity of Helium II. Physical Review, 4, 356–358.
    [12] Abo-Shaeer, J. R., Raman, C., Vogels, J. M., & Ketterle, W. (2001). Observation of Vortex Lattices in Bose-Einstein Condensates. Science, 5516, 476–479.
    [13] Abrikosov, A A. Magnetic properties of superconductors of the second group. United States.
    [14] Balibar, S. (2017). Laszlo Tisza and the two-fluid model of superfluidity. Comptes Rendus Physique, 9–10, 586–591.
    [15] Feder, D. L., Svidzinsky, A. A., Fetter, A. L., & Clark, C. W. (2001). Anomalous Modes Drive Vortex Dynamics in Confined Bose-Einstein Condensates. Physical Review Letters, 4, 564–567.
    [16] Tsubota, M., Kasamatsu, K., & Ueda, M. (2002). Vortex lattice formation in a rotating Bose-Einstein condensate. Phys. Rev. A 100, 023625.
    [17] Tonini, G., Werner, F., & Castin, Y. (2006). Formation of a vortex lattice in a rotating BCS Fermi gas. The European Physical Journal D, 2, 283–294.
    [18] Li, Y., Geißler, A., Hofstetter, W., & Li, W. (2018). Supersolidity of lattice bosons immersed in strongly correlated Rydberg dressed atoms. Phys. Rev. A 97, 023619.
    [19] Saccani, S., Moroni, S., & Boninsegni, M. (2012). Excitation Spectrum of a Supersolid. Phys. Rev. Lett. 108, 175301.
    [20] Kunimi, M., & Kato, Y. (2012a). Mean-field and stability analyses of two-dimensional flowing soft-core bosons modeling a supersolid. Phys. Rev. B 86, 060510(R).
    [21] Macrì, T., Maucher, F., Cinti, F., & Pohl, T. (2013). Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition. Phys. Rev. A 87, 061602(R).
    [22] Ancilotto, F., Rossi, M., & Toigo, F. (2013). Supersolid structure and excitation spectrum of soft-core bosons in three dimensions. Phys. Rev. A 88, 033618.
    [23] Tommaso. (9 C.E.). Ground State and Excitation Properties of Soft-Core Bosons | SpringerLink. Journal of Low Temperature Physics.
    [24] Putra, A., Salces-Cárcoba, F., Yue, Y., Sugawa, S., & Spielman, I. B. (2020). Spatial Coherence of Spin-Orbit-Coupled Bose Gases. Phys. Rev. Lett. 124, 053605. [25] Petter, D., Natale, G., van Bijnen, R. M. W., Patscheider, A., Mark, M. J., Chomaz, L., & Ferlaino, F. (2019). Probing the Roton Excitation Spectrum of a Stable Dipolar Bose Gas. Phys. Rev. Lett. 122, 183401.
    [25] Hertkorn, J., Schmidt, J. N., Böttcher, F., Guo, M., Schmidt, M., Ng, K. S. H., ... & Pfau, T. (2020). Density Fluctuations across the Superfluid-Supersolid Phase Transition in a Dipolar Quantum Gas. arXiv e-prints, arXiv-2009.
    [26] Natale, G., van Bijnen, R. M. W., Patscheider, A., Petter, D., Mark, M. J., Chomaz, L., & Ferlaino, F. (2019). Excitation Spectrum of a Trapped Dipolar Supersolid and Its Experimental Evidence. Phys. Rev. Lett. 123, 050402.
    [27] Chomaz, L., Petter, D., Ilzhöfer, P., Natale, G., Trautmann, A., Politi, C., Durastante, G., van Bijnen, R. M. W., Patscheider, A., Sohmen, M., Mark, M. J., & Ferlaino, F. (2019). Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X 9, 021012.
    [28] Li, J.-R., Lee, J., Huang, W., Burchesky, S., Shteynas, B., Top, F. Ç., Jamison, A. O., & Ketterle, W. (2017). A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature, 7643, 91–94.
    [29] Léonard, J., Morales, A., Zupancic, P., Esslinger, T., & Donner, T. (2017). Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature, 7643, 87–90.
    [30] Tanzi, L., Maloberti, J. G., Biagioni, G., Fioretti, A., Gabbanini, C., & Modugno, G. (2019). Evidence of superfluidity in a dipolar supersolid from non-classical rotational inertia. arXiv, arXiv-1912.
    [31] Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M., & Pfau, T. (2016). Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 116, 215301.
    [32] Cinti, F., Cappellaro, A., Salasnich, L., & Macrì, T. (2017). Superfluid Filaments of Dipolar Bosons in Free Space. Phys. Rev. Lett. 119, 215302.
    [33] Henkel, N., Nath, R., & Pohl, T. (2010). Three-Dimensional Roton Excitations and Supersolid Formation in Rydberg-Excited Bose-Einstein Condensates. Phys. Rev. Lett. 104, 195302.
    [34] Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I., & Zoller, P. (2010). Strongly Correlated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics. Phys. Rev. Lett. 104, 223002.
    [35] Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P., & Pupillo, G. (2010). Supersolid Droplet Crystal in a Dipole-Blockaded Gas. Phys. Rev. Lett. 105, 135301.
    [36] Hsueh, C.-H., Lin, T.-C., Horng, T.-L., & Wu, W. C. (2012). Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 86, 013619.
    [37] Hsueh, C.-H., Tsai, Y.-C., Wu, K.-S., Chang, M.-S., & Wu, W. C. (2013). Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates. Phys. Rev. A 88, 043646.
    [38] Lee, T. D., Huang, K., & Yang, C. N. (1957). Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Physical Review, 6, 1135–1145.
    [39] Chomaz, L., van Bijnen, R. M. W., Petter, D., Faraoni, G., Baier, S., Becher, J. H., Mark, M. J., Wächtler, F., Santos, L., & Ferlaino, F. (2018). Observation of roton mode population in a dipolar quantum gas. Nature Physics, 5, 442–446.
    [40] Cidrim, A., dos Santos, F. E. A., Henn, E. A. L., & Macrì, T. (2018). Vortices in self-bound dipolar droplets. Phys. Rev. A 98, 023618.
    [41] Lima, A. R. P., & Pelster, A. (2011). Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604(R).
    [42] Gautam, S., & Adhikari, S. K. (2019). Limitation of the Lee–Huang–Yang interaction in forming a self-bound state in Bose–Einstein condensates. Annals of Physics, 167917.
    [43] Boudjemâa, A. (2018). Fluctuations and quantum self-bound droplets in a dipolar Bose-Bose mixture. Phys. Rev. A 98, 033612.
    [44] Zhang, Y.-C., Maucher, F., & Pohl, T. (2019). Supersolidity around a Critical Point in Dipolar Bose-Einstein Condensates. Phys. Rev. Lett. 123, 015301.
    [45] Böttcher, F., Schmidt, J.-N., Wenzel, M., Hertkorn, J., Guo, M., Langen, T., & Pfau, T. (2019). Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys. Rev. X 9, 011051.
    [46] Tanzi, L., Lucioni, E., Famà, F., Catani, J., Fioretti, A., Gabbanini, C., Bisset, R. N., Santos, L., & Modugno, G. (2019). Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. Phys. Rev. Lett. 122, 130405.
    [47] Seydi, I., Abedinpour, S. H., Zillich, R. E., Asgari, R., & Tanatar, B. (2020). Rotons and Bose condensation in Rydberg-dressed Bose gases. Phys. Rev. A 101, 013628.
    [48] McCormack, G., Nath, R., & Li, W. (2020). Dynamical excitation of maxon and roton modes in a Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 102, 023319.
    [49] Henkel, N., Cinti, F., Jain, P., Pupillo, G., & Pohl, T. (2012). Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates. Phys. Rev. Lett. 108, 265301.
    [50] Essmann, U., & Träuble, H. (1967). The direct observation of individual flux lines in type II superconductors. Physics Letters A, 10, 526–527.
    [51] Harada, K., Matsuda, T., Bonevich, J., Igarashi, M., Kondo, S., Pozzi, G., Kawabe, U., & Tonomura, A. (1992). Real-time observation of vortex lattices in a superconductor by electron microscopy. Nature, 6399, 51–53.
    [52] Bishop, D. J. (1993). Heroic holograms. Nature, 6452, 209–209.
    [53] Self-consistent field, with exchange, for beryllium. (1935). Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 869, 9–33.
    [54] Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 2, 1225–1286.
    [55] Kadau, H., Schmitt, M., Wenzel, M., Wink, C., Maier, T., Ferrier-Barbut, I., & Pfau, T. (2016). Observing the Rosensweig instability of a quantum ferrofluid. Nature, 7589, 194–197.
    [56] Xi, K.-T., & Saito, H. (2016). Droplet formation in a Bose-Einstein condensate with strong dipole-dipole interaction. Phys. Rev. A 93, 011604(R).
    [57] Bisset, R. N., & Blakie, P. B. (2015). Crystallization of a dilute atomic dipolar condensate. Phys. Rev. A 92, 061603(R).
    [58] Pollack, S. E., Dries, D., Junker, M., Chen, Y. P., Corcovilos, T. A., & Hulet, R. G. (2009). Extreme tunability of interactions in a Li 7 Bose-Einstein Condensate. Phys. Rev. Letters, 102(9), 090402.
    [59] Johnson, C. (2012). Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation.
    [60] Mathew, T. (2008). Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Springer Science & Business Media.
    [61] Kopriva, D. A. (2009). Implementing Spectral Methods for Partial Differential Equations. Springer Science & Business Media.
    [62] Henkel, N. (2013) Rydberd-dressed Bose-Einstein condensates. Dissertation, Dresden University of Technology.
    [63] Barenghi, C. F. & Parker N. G. (2016) A Primer on Quantum Fluids. Springer,
    Switzeland.
    [64] Loan, C. V. (1992). Computational Frameworks for the Fast Fourier Transform. SIAM.
    [65] Gallemí, A., Roccuzzo, S. M., Stringari, S., & Recati, A. (2020). Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322.
    [66] Kasamatsu, K., Tsubota, M., & Ueda, M. (2003). Vortex Phase Diagram in Rotating Two-Component Bose-Einstein Condensates. Phys. Rev. Lett. 91, 150406.
    [67] Kumar, R. K., Tomio, L., Malomed, B. A., & Gammal, A. (2017). Vortex lattices in binary Bose-Einstein condensates with dipole-dipole interactions. Phys. Rev. A 96, 063624.
    [68] Ueda, M. (2010). Fundamentals and New Frontiers of Bose-Einstein Condensation. WORLD SCIENTIFIC.
    [69] Hsueh, C.-H., Wang, C.-W., & Wu, W.-C. (2020). Vortex structures in a rotating Rydberg-dressed Bose-Einstein condensate with the Lee-Huang-Yang correction. Phys. Rev. A 102, 063307.
    [70] Romero-Isart, O., Navau, C., Sanchez, A., Zoller, P., & Cirac, J. I. (2013b). Superconducting Vortex Lattices for Ultracold Atoms. Phys. Rev. Lett. 111, 145304.
    [71] Laver, M., Forgan, E. M., Brown, S. P., Charalambous, D., Fort, D., Bowell, C., ... & Cubitt, R. (2006). Spontaneous symmetry-breaking vortex lattice transitions in pure niobium. Physical review letters, 96(16), 167002.

    下載圖示
    QR CODE