簡易檢索 / 詳目顯示

研究生: 陳佩筠
Chen, Pei-Yun
論文名稱: 衰竭運動後增補牛奶對耐力運動表現之影響
Effect of Milk Supplement on the Endurance Performance After an Exhaustive Exercise
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 48
中文關鍵詞: 運動飲料營養耐力表現
英文關鍵詞: sport drink, nutrition, endurance performance
論文種類: 學術論文
相關次數: 點閱:385下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討在肝醣耗竭運動後,增補不同脂肪含量(全脂、脫脂)牛奶,對隨後耐力運動表現之影響。方法:以9名大學體育系男性學生為受試對象(年齡為20.6 ± 1.2歲,身高為177.5 ± 3.5公分,體重為72.9 ± 6.8公斤)。以重覆量數、平衡次序原則的實驗設計,受試者分別接受3種實驗處理,實驗處理間至少間隔7天。首先,每位受試者必須先接受最大攝氧量 (maximal oxygen uptake, VO2max) 測驗,並推算出最大功率 (power at VO2max, Pmax) 作為後續實驗處理之強度依據。在每次實驗處理中需依序接受肝醣耗竭運動測驗、恢復期4小時以及70% Pmax耐力運動的測驗。在恢復期期間,受試者必須飲用實驗處理增補飲料(全脂牛奶、脫脂牛奶、水)。評估實驗處理增補後之耐力運動耗竭時間 (TTE) 以及心肺功能與代謝的影響。結果:在耐力運動之耗竭時間中,3種實驗處理間沒有顯著差異 (p > .05) ,但是若以水實驗處理為基準值,全脂牛奶實驗處理的進步率顯著高於脫脂牛奶 (WFM vs. NFM, 53.9% ± 72.0% vs. 27.5% ± 52.1%, p = .035) 。在70% Pmax耐力運動中的平均心跳率,全脂牛奶實驗處理顯著高於脫脂牛奶 (WFM vs. NFM, 160 ± 16 vs. 152 ± 14 bpm, p < .05) 。在呼吸交換率中,水實驗處理在耐力運動時的25%TTE顯著低於之後的50-100%TTE (p < .05) ,醣類氧化速率上,全脂牛奶與水實驗處理的25%TTE顯著低於之後的50-100%TTE (p < .05) 。在游離脂肪酸上,在4小時恢復後的立即 (WFM vs. NFM vs. W, 0.23 ± 0.09 vs. 0.13 ± 0.05 vs. 0.66 ± 0.26 mmol•L-1, p < .05) 及70%Pmax耐力運動後 (WFM vs. NFM vs. W, 0.73 ± 0.24 vs. 0.77 ± 0.34 vs. 1.40 ± 0.55 mmol•L-1, p < .05) ,水實驗處理顯著高於全脂牛奶與脫脂牛奶。結論:本研究結果顯示,與脫脂牛奶相較下,增補全脂牛奶,在肝醣耗竭運動後,可能可以提昇非最大耐力的自行車運動至衰竭時間,並且節省肝醣的使用。而由於運動時間的延長,因此有心跳率較高的情形。

    Purpose: To investigate the effects of milk-based drinks with different fat (whole- and non-fat) on the endurance performance following an exhaustive interval workout. Methods: Nine male collegiate athletes (age, 20.6 ± 1.2 yrs; height, 177.5 ± 3.5 cm; weight, 72.9 ± 6.8 kg) were recruited in this repeated measured and counter-balance designed study, and completed 3 trials separated by at least 7 days. All subjects were asked to perform incremental cycling exercise test for calculating the power output at 70% maximal oxygen uptake (70%Pmax). In each treatment, subjects performed a glycogen-depleting exercise followed by 4 hours of recovery, and a subsequent endurance trial to volitional exhaustion at 70%Pmax. During the recovery period, subjects consumed the experimental drinks: whole-fat milk (WFM), non-fat milk (NFM), or water (W). The effects of the drink on time to exhaustion (TTE) and the cardiovascular and metabolic responses to endurance trial were examined. Results: No significant differences on the TTE were observed among treatments (p > .05). However, the change of TTE between WFM and W was significantly higher than that in NFM (WFM vs. NFM, 53.9% ± 72.0% vs. 27.5% ± 52.1%, p = .035). The average heart rate during endurance trial at 70%Pmax was significantly higher in WFM than that in NFM (WFM vs. NFM, 160 ± 16 vs. 152 ± 14 bpm, p < .05). In the W treatment, the respiratory exchange ratio and fat oxidation rate at 25%TTE were significantly higher than those at 50%–100%TTE (p < .05). The glucose oxidation rates at 25%TTE were also significantly lower than those at 50%–100%TTE (p < .05) in the WFM and W, respectively. The free fatty acids concentrations immediately after the 4 hours of recovery (WFM vs. NFM vs. W, 0.23 ± 0.09 vs. 0.13 ± 0.05 vs. 0.66 ± 0.26 mmol•L-1, p < .05) and after the endurance trial at 70%Pmax (WFM vs. NFM vs. W, 0.73 ± 0.24 vs. 0.77 ± 0.34 vs. 1.40 ± 0.55 mmol•L-1, p < .05) in W were significantly higher than those in WFM and NFM. Conclusion: These results suggest that milk-based drink with whole-fat, while comparing the non-fat milk, might improve the TTE and induce the glycogen sparing effect during the submaximal cycling exercise following the glycogen-depleting workout, however, this improvement might also increase the heart rate responses during exercise.

    中文摘要............................................i 英文摘要............................................ii 謝誌................................................iii 目 次............................................iv 表 次............................................vii 圖 次............................................vii 第壹章 緒論........................................1 第一節 前言........................................1 第二節 研究重要性..................................4 第三節 研究目的....................................4 第四節 研究假設....................................4 第五結 研究範圍與限制..............................5 第六節 名詞操作性定義..............................5 第貳章 文獻探討.....................................8 第一節 牛奶之成分介紹..............................8 第二節 牛奶對耐力運動表現之影響....................10 第三節 脂肪代謝途徑................................13 第四節 本章總結....................................15 第參章 研究方法.....................................16 第一節 研究對象....................................16 第二節 實驗流程設計................................16 第三節 實驗日期與地點..............................17 第四節 實驗流程....................................17 第五結 實驗方法與步驟..............................18 第六節 前導實驗結果................................22 第七節 資料處理與統計分析..........................23 第肆章 結果........................................24 第一節 受試者基本資料..............................24 第二節 肝醣耗竭運動測驗時間........................24 第三節 70%Pmax耐力運動表現.........................25 第四節 血液分析....................................28 第伍章 討論........................................32 第一節 肝醣耗竭運動測驗時間間......................32 第二節 增補牛奶對肝醣耗竭運動後生理恢復之影響......32 第三節 增補牛奶對70%Pmax耐力運動表現之影響.........33 第四節 增補牛奶對70%Pmax耐力運動中生理生化指標之影響...34 第陸章 結論與建議..................................37 第一節 結論........................................37 第二節 建議........................................37 參考文獻............................................38 ㄧ、 中文部份.......................................38 二、 外文部份.......................................38 附錄 附錄ㄧ 健康情況調查表..............................44 附錄二 受試者須知..................................45 附錄三 受試者自願同意書............................46 附錄四 最大攝氧量測驗紀錄表........................47 附錄五 實驗處理流程紀錄表..........................48

    一、 中文部分:
    湯馥君、施嘉美、鄭景峰、賴淑萍、鄭小嵐、李榮生、張雅如(譯)(2008)。運動營養學。台北市:華騰。(Asker Jeukendrup & Michael Gleeson, 2004)

    二、 外文部分:
    Achten, J., & Jeukendrup, A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Medicine and Sciences in Sports and Exercise, 34(1), 2-97.

    Achten, J., Venables, M. C., & Jeukendrup, A. E. (200). Fat oxidation rates are higher during running compared to cycling over a wide range of intensities. Metabolism, 52(6), 747-752.

    Barker, A. R., Bond, B., Toman, C., Williams, C. A., & Armstrong, N. (2012). Critical power in adolescents: Physiological bases and assessment using all-out exercise. European Journal of Applied Physiology, 112(4), 1359-1370.

    Burke, L. M., Kiens, B., & Ivy, J. L. (2004). Carbohydrates and fat for training and recovery. Journal of Sports Sciences, 22(1), 15-30.

    Casey, A., Mann, R., Banister, K., Fox, J., Morris, P. G., MacDonald, I. A., & Greenfaff, P. L. (2000). Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. American Journal of Physiology Endocrinology and Metabolism, 278(1), E65-E75.

    Carrithers, J. A., Williamson, D. L., Gallagher, P. M., Godar, M., P, Schulze, K. E., & Trappe, S. W. (2000). Effects of postexercise carbohydrate-protein feedings on muscle glycogen restoration. Journal of Application Physiology, 88, 1976-1982.

    Costill, D. L. (1991). Carbohydrate for athletic training and performance. Boletin de la Associacion Medica de Puerto Rico, 83(8), 350-353.

    Evans, W. J., & Hughes, V. A. (1985). Dietary carbohydrates and endurance exercise. American Journal Clinical Nutrition, 41(Suppl.5), 1146-1154.

    Fallowfield, J. L., Williams, C., & Singh, R. (1995). The influence of ingesting a carbohydrate-electrolyte beverage during 4 hours of recovery on subsequent endurance capacity. International Journal of Sport Nutrition, 5(4), 285-299.

    Fallowfield, J. L., & William, C. (1997). The influence of a high carbohydrate intake during recovery from prolonged, constant-pace running. International Journal of Sport Nutrition, 7(1), 10-25.

    Friedman, J. E., Neufer, P. D., & Dohm, G. L. (1991). Regulation of glycogen resynthesis following exercise. Dietary considerations. Sports Medicine, 11(4), 232-243.

    Gilson1, S. F., Saunders, M. J., Moran, C. W., Moore, R. W., Womack, C. J., & Todd, M. K. (2010). Effects of chocolate milk consumption on markers of muscle recovery following soccer training: A randomized cross-over study. Journal of the International Society of Sports Nutrition, 19(7), 19.

    Green, M. S., Corona, B. T., Doyle, J. A, & Ingalls, C. P. (2008). Carbohydrate protein drinks do not enhance recovery from exercise-induced muscle injury. International Journal of Sports Nutrition and Exercise Metabolism, 18, 1-18.

    Hartman, J. W., Tang, J. E., Wilkinson, S. B., Tarnopolsky, M. A., Lawrence, R. L., Fullerton, A. V., & Phillips, S. M. (2007). Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. The American Journal of Clinical Nutrition, 86, 373-381.

    Haug, A., Hostmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition: A review. Lipids in Health and Disease, 6-25.

    Ivy, J. L. (1991). Muscle glycogen synthesis before and after exercise. Sports Medicine, 11(1), 6-19.

    Ivy, J.L., Katz, A. L., & Cutler, C. L. (1988). Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. Journal Applied Physiological, 64(4), 1480-1485.

    Ivy, J. L. (2001). Dietary strategies to promote glycogen synthesis after exercise. Canada Journal Applied Physiological, 26(Suppl.6), S236-S245.

    Ivy, J. L., Goforth, H. W. Jr., Damon, B. M., McCauley, T. R., Parsons, E. C., & Price, T. B. (2002). Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. Journal of Applied Physiology, 93(4), 1337-1344.

    Jensen, R. G.., & Newburg, D. S. (1995). Bovin milk lipids. In Jensen R. G. (Eds.), Handbook of milk composition (pp. 543-575). USA: Academic Press.

    Jeukendrup, A. E., Raben, A., Gijsen, A., Stegen, J. H., Brouns, F., Saris, W. H., & Wagenmakers, A. J. (1999). Glucose kinetics during prolonged exercise in highly trained human subjects: Effect of glucose ingestion. The Journal of Physiology, 515(2), 579-589.

    Karp, J. R., Johnston, J. D., Tecklenburg, S., Mickleborough, T. D., Fly, A. D., & Stager, J. M. (2006). Chocolate milk as a post-exercise recovery aid. International Journal of Sport Nutrition and Exercise Metabolism, 16(1), 78-91.

    Kerksick, C., Harvey, T., Stout, J., Campbell, B., Wilborn, C., Kreider, R., … Antonio, J. (2008). International Society of Sports Nutrition position stand: Nutrient timing. Journal of the International Society of Sports Nutrition, 17(5), 17. doi:10.1186/1550-2783-5-18.

    Lee, J. K., Maughan, R. J., Shirreffs, S. M., & Watson, P (2008). Effects of milk ingestion on prolonged exercise capacity in young, healthy men. Nutrition, 24, 340-347. doi:10.1016/j.nut.2008.01.001

    Luden, N. D., Saunders, M. J., & Todd, M. K. (2007). Post-exercise carbohydrate-protein- antioxidant ingestion decreases CK and muscle soreness in cross-countryrunners. International Journal of Sports Nutrition and Exercise Metabolism, 17, 109-122.

    Ontsouka, C. E., Bruckmaier, R. M., & Blum, J. W. (2003). Fractionized milk composition during removal of colostrum and mature milk. Journal of Dairy Sciences, 86, 2005-2011.

    Pascoe, D. D., Costill, D. L., Fink, W. J., Robergs, R. A., & Zachwieja, J. J. (1993). Glycogen resynthesis in skeletal muscle following resistive exercise. Medicine and Science in Sports and Exercise, 25(3), 349-354.

    Phillips, S. M., Tang, J. E., & Moore, D. R. (2009). The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. Journal of the American College of Nutrition, 28(4), 343-354.

    Pritchett, K., Bishop, P., Pritchett, R., Green, M., & Katica, C. (2009). Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Applied Physiology, Nutrition, and Metabolism, 34, 1017-1022.

    Pitsiladis, Y. P., Smith, I., & Mauhgan, R. J. (1999). Increased fat availability enhances the capacity of trained individual to perform prolonged exercise. Medicine and Sciences in Sports and Exercise, 31(11), 1570-1579.

    Romano-Ely, B. C., Todd, M. K., Saunders, M. J., & St Laurent, T. G. (2006). Effects of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Medicine and Science in Sports and Exercise, 38, 1608-1616.

    Rowlands, D. S., Thorp, R. M., Rossler, K., Graham, D. F., & Rockell, M. J. (2007). Effect of protein-rich feeding on recovery after intense exercise. International Journal of Sports Nutrition and Exercise Metabolism, 17, 521-43.

    Roy, B. D. (2007). Milk: the new sports drink? A review. Journal of the International Society of Sports Nutrition, 15(5), 15. doi:10.1186/1550-2783-5-15.

    Saunders, M. J., Kane, M. D., & Todd, M. K. (2004). Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Medicine and Science in Sports and Exercise, 36, 1233-1238.

    Spaccarotella, K. J., & Andzel, W. D. (2011). The effects of low fat chocolate milk on postexercise recovery in collegiate athletes. Journal of Strength and Conditioning Research, 12(25), 3456-3460. doi: 10.1519/JSC.obo13e3182163071

    Stevenson, E., Williams, C., McComb, G., & Oram, C. (2005). Improved recovery from prolonged exercise following the consumption of low glycemic index carbohydrate meals. International Journal of Sport Nutrition and Exercise Metabolism, 15(4), 333-349.

    Tarnopolsky, M. A., Bosman, M., Macdonald, J. R., Vandeputte, D., Martin, J., & Roy, B. D. (1997). Postexercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. Journal of Applied Physiology, 83(6), 1877-1883.

    Thomas, K., Morris, P., & Stevenson, E. (2009). Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Applied Physiology in Nutrition and Metabolism, 34, 78-82.

    USDA National Nutrient Database for Standard Reference. Retrieved October 20, 2009, from: http://www.nal.usda.gov/fnic/foodcomp/Data/

    Valentine, R. J., Saunders, M. J., Todd, M. K., & St. Laurent, T. G. (2008). Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. International Journal of Sports Nutrition and Exercise Metabolism, 18, 363-378.

    Van Hall, G.., Shirreffs, S. M., & Calbet, J. A. L. (2000). Muscle glycogen resynthesis during recovery from cycle exercise: No effect of additional protein ingestion. Journal of Applied Physiology, 88, 1631-1636.

    Wallis, G. A., Rowlands, D. S., Shaw, C., Jentjens, R. L., & Jeukendrup, A. E. (2005). Oxidation of combined ingestion of maltodextrins and fructose during exercise. Medicine and Science in Sports and Exercise, 37(3), 426-432.

    Williams, M. B., Raven, P. B., Fogt, D. L., & Ivy, J. L. (2003). Effects of Recovery Beverages on Glycogen Restoration and Endurance Exercise Performance. Journal of Strength and Conditioning Research, 17(1), 12-19.

    Wilkinson, S. B., Tarnopolsky, M. A., MacDonald, M. J., MacDonald, J. R., Armstrong, D., & Phillips, S. M. (2007). Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. The American Journal of Clinical Nutrition, 85(4), 1031-1040.

    Wojcik, J. R., Walberg-Rankin, J., Smith, L. L., & Gwazdauskas, F. C. (2001). Comparison of carbohydrate and milk-based beverages on muscle damage and glycogen following exercise. International Journal of Sports Nutrition and Exercise Metabolism, 11(4), 406-419.

    Zawadzki, K. M., Yaspelkis, B. B., & Ivy, J. L. (1992). Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. Journal of Applied Physiology, 72(5), 1854-1859.

    下載圖示
    QR CODE