簡易檢索 / 詳目顯示

研究生: 李清鋒
Ching-Feng Lee
論文名稱: 生物感測表面聲波元件之製作與應用
Fabrication of the SAW device and its application to biosensing
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 141
中文關鍵詞: 表面聲波元件生物感測器拉福波
英文關鍵詞: SAW device, Biosensor, Love wave
論文種類: 學術論文
相關次數: 點閱:203下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊產業的蓬勃發展,表面聲波元件在通訊產業應用最為顯著,因表面聲波濾波器具有體積小、重量輕、低成本、製程與IC技術相容性高及高性能濾波功能等優點,並且可以針對各項需求選用不同的壓電材料,製成適用不同波段的濾波器,是目前無線通訊系統和手機的關鍵零組件。除了在訊號處理方面表現突出之外,近十年來,表面聲波元件以其高質量靈敏度的優異特性,更進一步應用於生物感測領域,表面聲波元件可感測質量、密度、濕度、濃度、氣體辨識或黏滯度等。基本上表面聲波元件運用於訊號處理和生化感測方面的設計是不同的,但所有元件皆運用相同的物理特性及原理。
    本論文即以AZ 6112及稀釋後的SU-8作為波導層,利用其低成本和低密度的優點製作出拉福波生物感測器,改善二氧化矽在製程上繁雜,多一道微影與蝕刻程序,而且耗時及費用昂貴等缺點。在元件完成之後,將其應用於去離子水與老鼠細胞(3T3)濃度的感測。由實驗結果發現AZ 6112(波導層厚度2.130 um)比SU-8(波導層厚度1.775 um)更適合作為拉福波元件的波導層,並且其頻率和相位的偏移量皆比SU-8大。除此之外,兩者皆隨著老鼠細胞濃度增加,其頻率偏移量愈大,當滴下相同體積(5 ul)且濃度為6000個數/l的老鼠細胞時,SU-8作為波導層時,其頻率偏移量為18.16 kHz,而AZ 6112作為波導層時,其頻率偏移量237.523 kHz,這表示以AZ 6112作為波導層之元件,其頻率偏移量是以SU-8為波導層的13倍之多,亦即表示以AZ 6112的拉福波元件更適合應用於生物感測。

    With the rapid development of communication industry, SAW devices are noticeable in communication application because SAW filters have advantages of small volume, lightness, low costs, high IC-compatibility, and better filtering performance. Different piezoelectric materials can be selected to fabricate various filters with dissimilar wave band, and these SAW filters have become key components of wireless communication and mobile phone. Except for satisfactory signal processing application, SAW devices, which have excellent characteristic of high mass sensitivity, have been further applied to bio-sensing areas in the recent decade. SAW devices can be used to sense mass, density, humidity, concentration, vapor recognition, viscosity, and so forth. Although SAW devices for signal processing and biosensor have different design rule, these devices will use the same physical properties and principles.
    In this study, Love wave biosensors using diluted SU-8 and AZ 6112 as guiding layer are fabricated because of their advantages of low cost and low density. They can improve the shortcomings using silicon dioxide as a material of guiding layer, including complex fabrication process, a lot of time spent, and high cost. After finishing the fabrication of Love wave biosensors, D. I. water and mouse cells (3T3) are applied to test these SAW devices. The results show that Love wave biosensor using AZ 6112 (thickness 2.130 m) is better than the one using SU-8 (thickness 1.775 m), which implies that Love wave biosensor using AZ 6112 has better performances of frequency shift and phase shift. With concentration of mouse cell increased, the frequency shifts of these two SAW devices are also increased. Moreover, when the same volume (5 ul) and concentration (6000 piece/ul) of mouse cells are applied to them, frequency shifts of Love wave biosensor using diluted SU-8 and AZ 6112 as guiding layers are 18.16 kHz and 237.523 kHz respectively, which has demonstrated the sensitivity of frequency shift of the latter is thirteen times than the former.

    摘 要 Ⅰ 總目錄 Ⅲ 圖目錄 V 表目錄 XII 第一章 緒論 1 1.1 微機電系統簡介 1 1.2 生物感測器 3 1.3 表面聲波元件 4 1.4 研究動機 6 第二章 文獻回顧 11 2.1 表面波概論 11 2.2 壓電效應 11 2.3 表面聲波元件原理 12 2.4 表面聲波感測器的種類 12 第三章 理論基礎及拉福波感測元件設計 36 3.1 理論基礎 36 3.2 表面聲波設計 45 3.3 拉福波感測元件設計 50 第四章 元件製作和量測結果與討論 73 4.1 拉福波感測元件製作 73 4.2 拉福波元件量測方式 84 4.3 元件量測 86 4.4 結果與討論 96 第五章 結論與未來展望 136 5.1 結論 136 5.2 未來展望 137 參考文獻 138

    1. 林啟萬, "生物晶片", 科學月刊, 33 (11), p932-933 (2002).
    2. 楊啟榮, 微機電系統原理與應用, 國立台灣師範大學上課講義 (2003).
    3. C. Y. Lee, T. T. Wu and Y. Y. Chen, "A novel method for evaluating the thickness of silicon membrane using a SAW sensor", 第七屆奈米工程暨微系統技術研討會, p191-195 (2003).
    4. T. Shigematsu, M. K. Kurosawa and K. Asai, "Nanometer stepping devices of surface acoustic wave motor", IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 50 (4), p376 -385 (2003).
    5. H. Nakahata, S. Fujii and K. Higaki, "Diamond-based surface acoustic wave devices", Semicond. Sci. and Technol., 18, pS96-S104 (2003).
    6. M. J. Vellekoop, "Acoustic wave sensors and their technology", Ultrasonics, 36, p7-14 (1998).
    7. K. Z. Kourosh , W. Wlodarski and Y. Y. Chen, "Novel Love mode surface acoustic wave based immunosensors", Sensors and Actuators B, 91, p143-147 (2003).
    8. G. L Harding and J. Du, "Design and properties of quartz-based Love wave acoustic sensors incorporating silicon dioxide and PMMA guiding layers", Smart Mater. Struct., 6, p716-720 (1997).
    9. Z. Wang, J. D. N. Cheeke, and C. K. Jen, "Sensitivity analysis for Love mode acoustic gravimetric sensors", Appl. Phys. Lett., 64 (22), p2940-2942 (1994).
    10. http://www.yorku.ca/esse/veo/earth/sub1-10.htm
    11. C. K. Campbell, Surface Acoustic wave devices for mobile and wireless communications, San Diego : Academic Press (1998).

    12. J. Kondoh and S. Shiokawa, "Liquid-phase microsensor based on surface acoustic wave devices", Electronics and Communications in Japan, Part 2, 81 (11), p187-194 (1998).
    13. T. Nomura, M. Uchiyama and A. Saitoh, "Measurement of acoustic properties of liquid using SH- and R-mode surface acoustic wave", IEEE International Frequency Control Symposium, p645-651 (1998).
    14. C. Y. Shen, C. P. Huang and H. C. Chuo, "The improved ammonia gas sensors constructed by L-glutamic acid hydrochloride on surface acoustic wave devices", Sensors and Actuators B, 84, p231-236 (2002).
    15. M. Penza, G. Cassano and A. Sergi, "SAW chemical sensing using poly-ynes and organometallic polymer films", Sensors and Actuators B, 81, p88-98 (2001).
    16. A. Hierlemann, and H. Baltes, "CMOS-based chemical microsensors", Analyst, 128, p15-28 (2003).
    17. Q. Y. Cai, J. Park and D. Heldsinger, "Vapor recognition with an integrated array of polymer-coated flexural plate wave sensors", Sensors and Actuators B, 62, p121-130 (2000).
    18. S. J. Martin, A. J. Ricco and G. C. Frye, "Sensing in liquids with SH plate mode devices", IEEE Ultrasonics Symposium, 1, p607-611 (1988).
    19. F. G. Tseng, K.C. Leou and L.C. Pan, "Acoustic plate mode tissue sensor", Sensors, 2002, 1, p278 -281 (2002).
    20. M. Hoummady, A. Campitelli and W. Wlodarski, "Acoustic wave sensors: design, sensing mechanisms and applications", Smart Mater. Struct., 6, p647-657 (1997).
    21. R. L. Baer, C. A. Flory, M. and D. S. Solomon, "SAW chemical sensors", IEEE Ultrasonics Symposium, 1, p293 -298 (1992).
    22. A. Leidl, I. Oberlack and U Schaber, "Surface acoustic wave devices and applications in liquid sensing", Smart Mater. Struct., 6, p680-688 (1997).

    23. E. Gizeli, "Design considerations for the acoustic waveguide biosensor", Smart Mater. Struct., 6, p700-706 (1997).
    24. J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors, MEMS, and Smart Devices, New York : Wiley (2001).
    25. F. Bender, R. W. Cernosek and F. Josse, "Love-wave biosensors using cross-linked polymer waveguides on LiTaO3 substrates", Electronics Letters, 36 (19), p1672-1673 (2000).
    26. K. Z. Kourosh, T. Adrian, W. Wlodarski and A. Holland, "A novel love mode device with nanocrystalline ZnO film for gas sensing applications", IEEE conference on Nonotechnology 2001, p556-561 (2001).
    27. http://www.src.nctu.edu.tw/safety/MSDS/AZ%206112.doc
    28. http://www.src.nctu.edu.tw/safety/MSDS/AZ%20P4620.doc
    29. http://www.glue.umd.edu/~shengli/SU-8.html
    30. E. Gizeli, A. C. Stevenson and N. J. Goddard, "A novel Love-plate acoustic sensor utilizing polymer overlayers", IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency control, 39 (5), p657-659 (1992).
    31. D. W. Branch and S. M. Brozik, "Low-level detection of a Bacillus anthracis stimulant using Love-wave biosensors on 36°YX LiTaO3", Biosensors and Bioelectronics, 19, p849-859 (2004).
    32. F. Josse, F. Bender and R. W. Cernosek, "Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids", Analytical Chemistry, 73 (24), p5937-5944 (2001).
    33. G. McHale, M. I. Newton and F. Martin, "Resonant conditions for Love wave guiding layer thickness", Appl. Phys. Lett., 79 (21), p3542-3543 (2001).
    34. D. S. Ballantine, R. M.White and S. J. Martin, E. T. Zellers, H. Wohltjen, Acoustic wave sensors theory, design, and physico-chemical applications (1997).
    35. D.D. Stubbs, W.D. Hunt and S.H. Lee, "Gas phase activity of anti-FITC antibodies immobilized on a surface acoustic wave resonator device", Biosensors and Bioelectronics, 17, p471-477 (2002).
    36. K. Z. Kourosh, A. P. David and W. Wojtek, "Comparison of layered based SAW sensors", Sensors and Actuators B, 91, p303-308 (2003).
    37. S. J. Oh, J. Zhang and Y. Cheng, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes", Applied Physics Letters, 84 (19), p3738-3740 (2004).
    38. 袁帝文, 王岳華, 謝孟翰, 高頻通訊電路設計, 高立圖書有限公司 (2002).
    39. 郭仁財, 微波工程, 高立圖書有限公司 (2001).
    40. 育英科技有限公司編著, 射頻電路設計實習, 滄海書局 (2001).
    41. H. Pan, H. Zhu and G. Feng, "The Love wave sensor based on network analyzer", IEEE 2002 international conference on communications, circuits and systems, 2, p1762-1765 (2002).

    QR CODE