研究生: |
張巧潔 Chang, Chiao-Chieh |
---|---|
論文名稱: |
電動車汰役電池之使用與生命週期評估 The Exploration of Usage and Life Cycle Assessment of Repurposing EV Batteries |
指導教授: |
郭乃文
Kuo, Nae-Wen |
口試委員: |
郭乃文
Kuo, Nae-Wen 王文裕 Wang, Wen-Yu 王怡心 Wang, Yi-Shin |
口試日期: | 2024/06/11 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 鋰離子電池 、生命週期評估 、汰役電池再利用 、循環經濟 |
英文關鍵詞: | lithium-ion battery, life cycle assessment, battery repurposing, circular economy |
研究方法: | 文件分析法 、 數據分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202401273 |
論文種類: | 學術論文 |
相關次數: | 點閱:121 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為追求2050年淨零碳排的目標,電動車被視為能有效減少溫室氣體排放的途徑,然而作為動力來源的鋰離子電池仍可能造成其他環境衝擊,除了製造、使用與回收階段,由於電池自電動車退役後仍有80%剩餘容量,近年來各國學者指出可新增電池再利用階段,汰役電池在回收前可作為其他場所的備用電力使用,減少製造新電池的環境衝擊。截至今日,儘管台灣已有電動車電池的製造、使用與回收階段生命週期評估相關研究,但對於電池再利用方面並未有所著墨,因此,本研究針對電動車鋰離子電池進行生命週期評估,考量電池的製造、回收階段,並特別聚焦在汰役電池的再利用階段,計算電池再利用能帶來的環境效益。本研究以生命週期評估作為研究方法,使用SimaPro生命週期評估軟體,並採用ReCiPe 2016與IMPACT World+兩種評估方法試圖找出電池帶來的主要環境衝擊與貢獻來源。在電池製造階段中,鎳與鈷金屬為主要的環境衝擊來源,而錳金屬對人體致癌毒性產生較大威脅。至於在電池回收階段,為回收有價金屬,可採用結晶法或電解法進行回收,結果發現兩種回收方法的衝擊熱點皆為硫酸與電力,特別對人體健康衝擊為最,而電解法的電力衝擊又比結晶法為多。因此,在電池回收階段應試圖減少硫酸與電力的使用,以降低環境衝擊。最後在汰役電池再利用階段,本研究根據鋰離子電池充放電測試數據保守估計汰役後的電動車電池可再利用五年,並以此計算不同再利用情境所能取代的新電池製造生產數量。此外,本研究發現將電池再利用可減少因為六價鉻、鎳、砷、鉛、汞等重金屬之使用與排放對人體致癌毒性的影響,也可以降低銅、鋅、鎳、銀、釩等重金屬對淡水與海洋生態毒性的衝擊。除此之外,汰役電池再利用亦可減少製造新電池所帶來的碳排放。綜合上述,為建構低碳永續循環社會,應朝汰役電池再利用以及將使用至生命終期的鋰離子電池妥善回收處理,取回鎳與鈷等有價金屬再利用,以降低天然礦場的開採,提升資源永續利用,實踐循環經濟。
To achieve the goal of net zero carbon emissions by 2050, electric vehicles are seen as an effective way to reduce greenhouse gas emissions. However, lithium-ion batteries as a power source can still cause other environmental impacts. In addition to the manufacturing, use and recycling stages, since batteries still have 80% remaining capacity after electric vehicles are retired, scholars in recent years have pointed out that a new battery repurpose stage can be added. Retired batteries can be used as backup power in other places before recycling to reduce manufacturing environmental impact of new batteries. So far, although there have been life cycle assessment studies on the manufacturing, use and recycling stages of electric vehicle batteries in Taiwan, there has been no focus on battery repurpose. Therefore, this study conducted a life cycle assessment on lithium-ion batteries for electric vehicles, taking into account the battery manufacturing and recycling stages, and ultimately the battery reuse stage, are particularly focused on calculating the environmental benefits of battery repurpose.This study uses life cycle assessment as a research method, using SimaPro software, and using two assessment methods, ReCiPe 2016 and IMPACT World+, try to find out the main environmental impacts and contribution sources caused by batteries. During the battery manufacturing stage, nickel and cobalt metals are the main sources of environmental impact, while manganese metal poses a greater threat to human carcinogenic toxicity. As for the battery recycling stage, in order to recover valuable metals, crystallization method or electrolysis method can be used for recycling. It was found that the environmental impact hot spots of both the crystallization method and the electrolysis method are sulfuric acid and electricity, which have the greatest impact on human health. The electrolysis method has more electric impact than the crystallization method. In other words, the use of sulfuric acid and electricity should be reduced during the battery recycling stage to reduce environmental impact. Finally, in the battery repurpose stage, this study estimates that the battery can be repurposed for five years. With this data, the number of batteries required for different reuse scenarios is calculated. Furthermore, this study also found that the repurposing of batteries can reduce the impact of metals such as hexavalent chromium, nickel, arsenic, lead, and mercury on human carcinogenic toxicity, and can also reduce the impact of metals such as copper, zinc, nickel, silver, and vanadium on freshwater and marine ecotoxicity. After considering metal emissions, battery repurposing can also reduce the carbon emissions associated with manufacturing new batteries. Based on the above content, it is shown that repurposed batteries can reduce the environmental impact of nickel and cobalt metals in the manufacturing of new batteries, and the recovery of nickel and cobalt valuable metals in the recycling stage can also reduce the amount of minerals mined in the manufacturing stage and improve the sustainable use of resources.
Ahmadi, L., Young, S. B., Fowler, M., Fraser, R. A., & Achachlouei, M. A. (2017). A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems. The International Journal of Life Cycle Assessment, 22(1), 111-124. https://doi.org/10.1007/s11367-015-0959-7
Al-Alawi, M. K., Cugley, J., & Hassanin, H. (2022). Techno-economic feasibility of retired electric-vehicle batteries repurpose/reuse in second-life applications: A systematic review. Energy and Climate Change, 3, 100086. https://doi.org/https://doi.org/10.1016/j.egycc.2022.100086
Ali, H., Khan, H. A., & Pecht, M. (2022). Preprocessing of spent lithium-ion batteries for recycling: Need, methods, and trends. Renewable and Sustainable Energy Reviews, 168, 112809. https://doi.org/https://doi.org/10.1016/j.rser.2022.112809
Anand, C. K., & Amor, B. (2017). Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renewable and Sustainable Energy Reviews, 67, 408-416. https://doi.org/https://doi.org/10.1016/j.rser.2016.09.058
Asari, M., & Sakai, S.-i. (2013). Li-ion battery recycling and cobalt flow analysis in Japan. Resources, Conservation and Recycling, 81, 52-59. https://doi.org/https://doi.org/10.1016/j.resconrec.2013.09.011
Bałdowska-Witos, P., Piasecka, I., Flizikowski, J., Tomporowski, A., Idzikowski, A., & Zawada, M. (2021). Life Cycle Assessment of Two Alternative Plastics for Bottle Production. Materials, 14, 4552. https://doi.org/10.3390/ma14164552
Barkhausen, R., Fick, K., Durand, A., & Rohde, C. (2023). Analysing policy change towards the circular economy at the example of EU battery legislation. Renewable and Sustainable Energy Reviews, 186, 113665. https://doi.org/https://doi.org/10.1016/j.rser.2023.113665
Baum, Z. J., Bird, R. E., Yu, X., & Ma, J. (2022). Lithium-Ion Battery Recycling─Overview of Techniques and Trends. ACS Energy Letters, 7(2), 712-719. https://doi.org/10.1021/acsenergylett.1c02602
Bird, R., Baum, Z. J., Yu, X., & Ma, J. (2022). The Regulatory Environment for Lithium-Ion Battery Recycling. ACS Energy Letters, 7(2), 736-740. https://doi.org/10.1021/acsenergylett.1c02724
Bobba, S., Mathieux, F., Ardente, F., Blengini, G. A., Cusenza, M. A., Podias, A., & Pfrang, A. (2018). Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows. Journal of Energy Storage, 19, 213-225. https://doi.org/https://doi.org/10.1016/j.est.2018.07.008
Burchart-Korol, D., Jursova, S., Folęga, P., Korol, J., Pustejovska, P., & Blaut, A. (2018). Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. Journal of Cleaner Production, 202, 476-487. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.08.145
Burchart-Korol, D., Jursova, S., Folęga, P., & Pustejovska, P. (2020). Life cycle impact assessment of electric vehicle battery charging in European Union countries. Journal of Cleaner Production, 257, 120476. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120476
Camargos, P. H., dos Santos, P. H. J., dos Santos, I. R., Ribeiro, G. S., & Caetano, R. E. (2022). Perspectives on Li-ion battery categories for electric vehicle applications: A review of state of the art. International Journal of Energy Research, 46(13), 19258-19268. https://doi.org/https://doi.org/10.1002/er.7993
Canals Casals, L., Etxandi-Santolaya, M., Bibiloni-Mulet, P. A., Corchero, C., & Trilla, L. (2022). Electric Vehicle Battery Health Expected at End of Life in the Upcoming Years Based on UK Data. Batteries, 8(10), 164. https://www.mdpi.com/2313-0105/8/10/164
Carranza, G., Do Nascimiento, M., Fanals, J., Febrer, J., & Valderrama, C. (2022). Life cycle assessment and economic analysis of the electric motorcycle in the city of Barcelona and the impact on air pollution. Science of The Total Environment, 821, 153419. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153419
Casals, L. C., Amante García, B., & Canal, C. (2019). Second life batteries lifespan: Rest of useful life and environmental analysis. Journal of Environmental Management, 232, 354-363. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.11.046
Cederberg, C., & Stadig, M. (2003). System expansion and allocation in life cycle assessment of milk and beef production. The International Journal of Life Cycle Assessment, 8(6), 350-356. https://doi.org/10.1007/BF02978508
Chen, H., Yu, J., & Liu, X. (2022). Development Strategies and Policy Trends of the Next-Generation Vehicles Battery: Focusing on the International Comparison of China, Japan and South Korea. Sustainability, 14(19), 12087. https://www.mdpi.com/2071-1050/14/19/12087
Chen, J., Zhang, H., Zhao, P., Chen, Z., & Yan, J. (2023). Repurposing EV Batteries for Storing Solar Energy. Engineering, 29, 45-49. https://doi.org/https://doi.org/10.1016/j.eng.2023.09.002
Chen, Q., Lai, X., Gu, H., Tang, X., Gao, F., Han, X., & Zheng, Y. (2022). Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. Journal of Cleaner Production, 369, 133342. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133342
Chien, Y.-H., Hsieh, I. Y. L., & Chang, T.-H. (2023). Beyond personal vehicles: How electrifying scooters will help achieve climate mitigation goals in Taiwan. Energy Strategy Reviews, 45, 101056. https://doi.org/https://doi.org/10.1016/j.esr.2023.101056
Chou, D.-c., Chang, C.-S., & Hsu, Y.-Z. (2016). Investigation and analysis of power consumption in convenience stores in Taiwan. Energy and Buildings, 133, 670-687. https://doi.org/https://doi.org/10.1016/j.enbuild.2016.10.010
Chuang, Y.-S., Cheng, H.-P., & Cheng, C.-C. (2024). Reuse of Retired Lithium-Ion Batteries (LIBs) for Electric Vehicles (EVs) from the Perspective of Extended Producer Responsibility (EPR) in Taiwan. World Electric Vehicle Journal, 15(3), 105. https://www.mdpi.com/2032-6653/15/3/105
Commission, E. (2023). <EU relugation.pdf>.
Cox, B. L., & Mutel, C. L. (2018). The environmental and cost performance of current and future motorcycles. Applied Energy, 212, 1013-1024. https://doi.org/https://doi.org/10.1016/j.apenergy.2017.12.100
Cusenza, M. A., Guarino, F., Longo, S., Mistretta, M., & Cellura, M. (2019). Reuse of electric vehicle batteries in buildings: An integrated load match analysis and life cycle assessment approach. Energy and Buildings, 186, 339-354. https://doi.org/https://doi.org/10.1016/j.enbuild.2019.01.032
Dai, Q., Kelly, J. C., Gaines, L., & Wang, M. (2019). Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries, 5(2), 48. https://www.mdpi.com/2313-0105/5/2/48
Dawson, L., Ahuja, J., & Lee, R. (2021). Steering extended producer responsibility for electric vehicle batteries. Environmental Law Review, 23(2), 128-143. https://doi.org/10.1177/14614529211006069
Dehghani-Sanij, A. R., Tharumalingam, E., Dusseault, M. B., & Fraser, R. (2019). Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 104, 192-208. https://doi.org/https://doi.org/10.1016/j.rser.2019.01.023
DeRousseau, M., Gully, B., Taylor, C., Apelian, D., & Wang, Y. (2017). Repurposing Used Electric Car Batteries: A Review of Options. JOM, 69(9), 1575-1582. https://doi.org/10.1007/s11837-017-2368-9
Du, S., Gao, F., Nie, Z., Liu, Y., Sun, B., & Gong, X. (2022). Life cycle assessment of recycled NiCoMn ternary cathode materials prepared by hydrometallurgical technology for power batteries in China. Journal of Cleaner Production, 340, 130798. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.130798
Dunn, J., Slattery, M., Kendall, A., Ambrose, H., & Shen, S. (2021). Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environmental Science & Technology, 55(8), 5189-5198. https://doi.org/10.1021/acs.est.0c07030
Eddahech, A., Briat, O., & Vinassa, J.-M. (2015). Performance comparison of four lithium–ion battery technologies under calendar aging. Energy, 84, 542-550. https://doi.org/https://doi.org/10.1016/j.energy.2015.03.019
Fan, T., Liang, W., Guo, W., Feng, T., & Li, W. (2023). Life cycle assessment of electric vehicles' lithium-ion batteries reused for energy storage. Journal of Energy Storage, 71, 108126. https://doi.org/https://doi.org/10.1016/j.est.2023.108126
Farzaneh, F., & Jung, S. (2023). Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: A case study in the U.S. Journal of Cleaner Production, 390, 136111. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136111
Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315, 128005. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.128005
Güzel, T. D., & Alp, K. (2020). Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmospheric Pollution Research, 11(12), 2190-2201. https://doi.org/https://doi.org/10.1016/j.apr.2020.08.034
Gauto, M. A., Carazzolle, M. F., Rodrigues, M. E. P., de Abreu, R. S., Pereira, T. C., & Pereira, G. A. G. (2023). Hybrid vigor: Why hybrids with sustainable biofuels are better than pure electric vehicles. Energy for Sustainable Development, 76, 101261. https://doi.org/https://doi.org/10.1016/j.esd.2023.101261
Guo, W., Xi, B., Huang, C., Li, J., Tang, Z., Li, W., Ma, C., & Wu, W. (2021). Solid waste management in China: Policy and driving factors in 2004–2019. Resources, Conservation and Recycling, 173, 105727. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105727
Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., & Li, Z. (2014). A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 251, 38-54. https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.11.029
Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature, 575(7781), 75-86. https://doi.org/10.1038/s41586-019-1682-5
Harrison, K. L., & Manthiram, A. (2013). Microwave-Assisted Solvothermal Synthesis and Characterization of Various Polymorphs of LiVOPO4. Chemistry of Materials, 25(9), 1751-1760. https://doi.org/10.1021/cm400227j
Hartmut Poppa, Joseph Attiaa, Frederique Delcorsob, Atanaska Trifonovaa. (2014). <Lifetime analysis of four different lithium ion batteries for.pdf>.
Hawkins, T. R., Gausen, O. M., & Strømman, A. H. (2012). Environmental impacts of hybrid and electric vehicles—a review. The International Journal of Life Cycle Assessment, 17(8), 997-1014. https://doi.org/10.1007/s11367-012-0440-9
Herrmann, I. T., & Moltesen, A. (2015). Does it matter which Life Cycle Assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 86, 163-169. https://doi.org/https://doi.org/10.1016/j.jclepro.2014.08.004
Houache, M. S. E., Yim, C.-H., Karkar, Z., & Abu-Lebdeh, Y. (2022). On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries, 8(7), 70. https://www.mdpi.com/2313-0105/8/7/70
Huang, S. K., Kuo, L., & Chou, K.-L. (2018). The impacts of government policies on green utilization diffusion and social benefits – A case study of electric motorcycles in Taiwan. Energy Policy, 119, 473-486. https://doi.org/https://doi.org/10.1016/j.enpol.2018.04.061
ISO, I. (2006). ISO 14040: 2006 Environmental Management—Life Cycle Assessment—Principles and Framework [WWW Document]. Int. Organ. Stand. Geneva, Switz.
Kamran, M., Raugei, M., & Hutchinson, A. (2021). A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies. Resources, Conservation and Recycling, 167, 105412. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105412
Kassim, M. R. M., Jamil, W. A. W., & Sabri, R. M. (2021). State-of-Charge (SOC) and State-of-Health (SOH) Estimation Methods in Battery Management Systems for Electric Vehicles 2021 IEEE International Conference on Computing (ICOCO),
Kelly, J. C., Dai, Q., & Wang, M. (2020). Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries. Mitigation and Adaptation Strategies for Global Change, 25(3), 371-396. https://doi.org/10.1007/s11027-019-09869-2
Kerdlap, P., & Gheewala, S. H. (2016). Electric Motorcycles in Thailand: A Life Cycle Perspective. Journal of Industrial Ecology, 20(6), 1399-1411. https://doi.org/https://doi.org/10.1111/jiec.12406
Khowaja, A., Dean, M. D., & Kockelman, K. M. (2022). Quantifying the emissions impact of repurposed electric vehicle battery packs in residential settings. Journal of Energy Storage, 47, 103628. https://doi.org/https://doi.org/10.1016/j.est.2021.103628
Kim, H. C., Lee, S., & Wallington, T. J. (2023). Cradle-to-Gate and Use-Phase Carbon Footprint of a Commercial Plug-in Hybrid Electric Vehicle Lithium-Ion Battery. Environmental Science & Technology, 57(32), 11834-11842. https://doi.org/10.1021/acs.est.3c01346
Kuipers, M., Hust, F., Meier, S., & Sauer, D. U. (2017). An in-depth View into the Tesla Model S Module Part Two: Module Characterization and Comparison to Other State of the Art EV Battery Systems.
Kumar, J., Neiber, R. R., Park, J., Ali Soomro, R., Greene, G. W., Ali Mazari, S., Young Seo, H., Hong Lee, J., Shon, M., Wook Chang, D., & Yong Cho, K. (2022). Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chemical Engineering Journal, 431, 133993. https://doi.org/https://doi.org/10.1016/j.cej.2021.133993
Kuşakcı, A. O., Ayvaz, B., Cin, E., & Aydın, N. (2019). Optimization of reverse logistics network of End of Life Vehicles under fuzzy supply: A case study for Istanbul Metropolitan Area. Journal of Cleaner Production, 215, 1036-1051. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.090
Kvočka, D., Lešek, A., Knez, F., Ducman, V., Panizza, M., Tsoutis, C., & Bernardi, A. (2020). Life Cycle Assessment of Prefabricated Geopolymeric Façade Cladding Panels Made from Large Fractions of Recycled Construction and Demolition Waste. Materials, 13, 3931. https://doi.org/10.3390/ma13183931
Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y., Bhagat, R., & Zheng, Y. (2022). Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. eTransportation, 12, 100169. https://doi.org/https://doi.org/10.1016/j.etran.2022.100169
Lehtola, T. A., & Zahedi, A. (2021). Electric Vehicle Battery Cell Cycle Aging in Vehicle to Grid Operations: A Review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), 423-437. https://doi.org/10.1109/jestpe.2019.2959276
Lukuman Wahab, H. J. (2019). Factors Influencing the Adoption of Electric Vehicle: The Case of Electric Motorcycle in Northern Ghana. International Journal for Traffic and Transport Engineering, 9(1), 22-37. https://doi.org/10.7708/ijtte.2019.9(1).03
Martins, F., Machado, S., Albergaria, T., & Delerue-Matos, C. (2017). LCA applied to nano scale zero valent iron synthesis. The International Journal of Life Cycle Assessment, 22(5), 707-714. https://doi.org/10.1007/s11367-016-1258-7
Martins, L. S., Guimarães, L. F., Botelho Junior, A. B., Tenório, J. A. S., & Espinosa, D. C. R. (2021). Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. Journal of Environmental Management, 295, 113091. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113091
Meckling, J., & Nahm, J. (2019). The politics of technology bans: Industrial policy competition and green goals for the auto industry. Energy Policy, 126, 470-479. https://doi.org/https://doi.org/10.1016/j.enpol.2018.11.031
Melin, H. E., Rajaeifar, M. A., Ku, A. Y., Kendall, A., Harper, G., & Heidrich, O. (2021). Global implications of the EU battery regulation. Science, 373(6553), 384-387. https://doi.org/doi:10.1126/science.abh1416
Mera, Z., Pastaz, M., Camuendo, O., Rosero, R., Tapia, F., Rosero, F., & Arellano, O. (2021, 3-5 Nov. 2021). Life-cycle assessment of the batteries used in electric motorcycles in Ecuador. 2021 Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública (CASAP),
Meshram, P., Mishra, A., Abhilash, & Sahu, R. (2020). Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review. Chemosphere, 242, 125291. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125291
Pamu, Y., Kumar, V. S. S., Shakir, M. A., & Ubbana, H. (2022). Life Cycle Assessment of a building using Open-LCA software. Materials Today: Proceedings, 52, 1968-1978. https://doi.org/https://doi.org/10.1016/j.matpr.2021.11.621
Patry, G., Romagny, A., Martinet, S., & Froelich, D. (2015). Cost modeling of lithium-ion battery cells for automotive applications. Energy Science & Engineering, 3(1), 71-82. https://doi.org/https://doi.org/10.1002/ese3.47
Phifer, R. (2010). RCRA – The first 30 years of hazardous waste regulation. Journal of Chemical Health and Safety, 17(6), 4-7. https://doi.org/https://doi.org/10.1016/j.jchas.2010.01.002
Puig-Samper Naranjo, G., Bolonio, D., Ortega, M. F., & García-Martínez, M.-J. (2021). Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. Journal of Cleaner Production, 291, 125883. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.125883
Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233. https://doi.org/https://doi.org/10.1016/j.energy.2019.04.080
Querini, F., Béziat, J.-C., Morel, S., Boch, V., & Rousseaux, P. (2011). Life cycle assessment of automotive fuels: critical analysis and recommendations on the emissions inventory in the tank to wheels stage. The International Journal of Life Cycle Assessment, 16(5), 454-464. https://doi.org/10.1007/s11367-011-0273-y
Richa, K., Babbitt, C. W., & Gaustad, G. (2017). Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy. Journal of Industrial Ecology, 21(3), 715-730. https://doi.org/https://doi.org/10.1111/jiec.12607
Safarian, S. (2023). Environmental and energy impacts of battery electric and conventional vehicles: A study in Sweden under recycling scenarios. Fuel Communications, 14, 100083. https://doi.org/https://doi.org/10.1016/j.jfueco.2022.100083
Salgado, R. M., Danzi, F., Oliveira, J. E., El-Azab, A., Camanho, P. P., & Braga, M. H. (2021). The Latest Trends in Electric Vehicles Batteries. Molecules, 26(11), 3188. https://www.mdpi.com/1420-3049/26/11/3188
Schneider, F., Castillo Castro, D. S., Weng, K.-C., Shei, C.-H., & Lin, H.-T. (2023). Comparative Life Cycle Assessment (LCA) on battery electric and combustion engine motorcycles in Taiwan. Journal of Cleaner Production, 406, 137060. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137060
Shafique, M., & Luo, X. (2022). Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective. Journal of Environmental Management, 303, 114050. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.114050
Shafique, M., Rafiq, M., Azam, A., & Luo, X. (2022). Material flow analysis for end-of-life lithium-ion batteries from battery electric vehicles in the USA and China. Resources, Conservation and Recycling, 178, 106061. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.106061
Shen, Y.-S., Huang, G.-T., Chang-Chien, C.-L., Huang, L. H., Kuo, C.-H., & Hu, A. H. (2023). The impact of passenger electric vehicles on carbon reduction and environmental impact under the 2050 net zero policy in Taiwan. Energy Policy, 183, 113838. https://doi.org/https://doi.org/10.1016/j.enpol.2023.113838
Shu, X., Guo, Y., Yang, W., Wei, K., & Zhu, G. (2021). Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars. Energy Reports, 7, 2302-2315. https://doi.org/https://doi.org/10.1016/j.egyr.2021.04.038
Silva, D., Nunes, A. O., da Silva Moris, A., Moro, C., & Piekarski, T. O. R. (2017). How important is the LCA software tool you choose Comparative results from GaBi, openLCA, SimaPro and Umberto. Proceedings of the VII Conferencia Internacional de Análisis de Ciclo de Vida en Latinoamérica, Medellin, Colombia,
SimaPro. (2022). <DatabaseManualMethods.pdf>.
Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production, 215, 570-581. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.081
Sun, S., Jin, C., He, W., Li, G., Zhu, H., & Huang, J. (2021). Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Science of The Total Environment, 776, 145913. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145913
Sun, X., Hao, H., Liu, Z., Zhao, F., & Song, J. (2019). Tracing global cobalt flow: 1995–2015. Resources, Conservation and Recycling, 149, 45-55. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.05.009
Tao, Y., Wang, Z., Wu, B., Tang, Y., & Evans, S. (2023). Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries. Journal of Cleaner Production, 389, 136008. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.136008
Tran, M.-K., DaCosta, A., Mevawalla, A., Panchal, S., & Fowler, M. (2021). Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries, 7(3), 51. https://www.mdpi.com/2313-0105/7/3/51
Walvekar, H., Beltran, H., Sripad, S., & Pecht, M. (2022). Implications of the Electric Vehicle Manufacturers’ Decision to Mass Adopt Lithium-Iron Phosphate Batteries. IEEE Access, 10, 63834-63843. https://doi.org/10.1109/access.2022.3182726
Wang, J. C. (2019). Energy consumption in elementary and high schools in Taiwan. Journal of Cleaner Production, 227, 1107-1116. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.254
Wang, X., Wang, A., Zhong, W., Zhu, D., & Wang, C. (2022). Analysis of international nickel flow based on the industrial chain. Resources Policy, 77, 102729. https://doi.org/https://doi.org/10.1016/j.resourpol.2022.102729
Wang, Y., Zhang, C., & Chen, Z. (2014). A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries. Applied Energy, 135, 81-87. https://doi.org/https://doi.org/10.1016/j.apenergy.2014.08.081
Wen, W., Yang, S., Zhou, P., & Gao, S. Z. (2021). Impacts of COVID-19 on the electric vehicle industry: Evidence from China. Renewable and Sustainable Energy Reviews, 144, 111024. https://doi.org/https://doi.org/10.1016/j.rser.2021.111024
Wilson, N., Meiklejohn, E., Overton, B., Robinson, F., Farjana, S. H., Li, W., & Staines, J. (2021). A physical allocation method for comparative life cycle assessment: A case study of repurposing Australian electric vehicle batteries. Resources, Conservation and Recycling, 174, 105759. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105759
Winslow, K. M., Laux, S. J., & Townsend, T. G. (2018). A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling, 129, 263-277. https://doi.org/https://doi.org/10.1016/j.resconrec.2017.11.001
Wu, W., Cong, N., Zhang, X., Yue, Q., & Zhang, M. (2023). Life cycle assessment and carbon reduction potential prediction of electric vehicles batteries. Science of The Total Environment, 903, 166620. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.166620
Xiaopeng Chen, W. S., Thanh Tu Vo, Zhenwei Cao, Ajay Kapoor. (2012). <An_overview_of_lithium-ion_batteries_for_electric_vehicles.pdf>.
Yang, J., Gu, F., & Guo, J. (2020). Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations. Resources, Conservation and Recycling, 156, 104713. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.104713
Yang, Z., Huang, H., & Lin, F. (2022). Sustainable Electric Vehicle Batteries for a Sustainable World: Perspectives on Battery Cathodes, Environment, Supply Chain, Manufacturing, Life Cycle, and Policy. Advanced Energy Materials, 12(26), 2200383. https://doi.org/https://doi.org/10.1002/aenm.202200383
Zeng, X., Li, J., & Liu, L. (2015). Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 52, 1759-1767. https://doi.org/https://doi.org/10.1016/j.rser.2015.08.014
Zhang, W., Xu, C., He, W., Li, G., & Huang, J. (2018). A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Management & Research, 36(2), 99-112. https://doi.org/10.1177/0734242x17744655
Zhao, Y., Pohl, O., Bhatt, A. I., Collis, G. E., Mahon, P. J., Rüther, T., & Hollenkamp, A. F. (2021). A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustainable Chemistry, 2(1), 167-205. https://www.mdpi.com/2673-4079/2/1/11
Zimek, M., Schober, A., Mair, C., Baumgartner, R. J., Stern, T., & Füllsack, M. (2019). The Third Wave of LCA as the “Decade of Consolidation”. Sustainability, 11(12), 3283. https://www.mdpi.com/2071-1050/11/12/3283
Gogoro(2022年2月23日)。第 100 萬顆 Gogoro Network® 智慧電池生產下線 將於 3 月投放台灣市場 邀請 46 萬用戶共同決定投放城市 迎接智慧能源換電新時代 向電動化全新里程碑邁進。https://www.gogoro.com/tw/news/2022-02-23-gogoro-one-millionth-battery/
工業技術研究院(2022年4月15日)。工業技術與資訊月刊。https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=18_ content&SiteID =1&MmmID=1036452026061075714&MGID=1162363002200630603
中小企業綠色環保資訊網(2023年3月15日)。串聯30家企業建循環體系 台灣鋰電池資源產業協會成立https://green.sme.gov.tw/detail.php?lang=tw&type=1&id=2746
王文裕(2014)。中華民國專利號103132318。台北:經濟部智慧財產局。
行政院農業部(2024年3月29日)。農業經營現況。https://www.ey.gov.tw/state/CD050F 4E4007084B/0ededcaf-8d80-428e-96b7-7c24feb4ea0d
行政院環境保護署(2002年10月16日)。廢乾電池回收貯存清除處理方法及設施標準。https://oaout.moenv.gov.tw/law/LawContentSearch.aspx?id=FL021002
行政院環境保護署(2022年8月29日)。共推淨零碳排運具電動化並需妥處廢電池。
https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/6882037f-93a3-40ff-8562-0ac47b199b22
行政院環境保護署(2022年1月18日)。環保署、工研院研究有成 加值二次鋰電池處理技術。https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/6020af8b-a985-450e-9ea8-e0870f374548
行政院環境保護署(2023年4月)。08_資源循環零廢棄關鍵戰略行動計畫(核定本)。
行政院環境保護署(2023年3月6日)。環保署預告新增單只電芯重量大於1公斤的二次鋰電池為列管範圍。https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/cba7b28a-edd8-4b69-bab0-aa75a865d31f
林佳良(2014)。回收廢二次鋰電池有價金屬。朝陽科技大學環境工程與管理系碩士論文。
洪品嘉(2023)。車用鋰離子電池回收之生命週期評估。國立臺北大學自然資源與環境管理研究所碩士論文。
洪淑惠(2014)。廢棄鋰離子電池回收處理技術評估。國立臺灣大學環境工程學研究所博士論文。
能源知識庫(2017年11月15日)。【電力FAQ】備用容量率vs 備轉容量率,究竟是什麼。https://magazine.twenergy.org.tw/Cont.aspx?CatID=&ContID=2855
國家發展委員會(2022)。臺灣2050淨零排放路徑及策略總說明。https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
盛特材料股份有限公司(2024)。https://www.104.com.tw/company/1a2x6bmduo
黃鉉喨(2017)。廢棄物管理之生命週期評估-以在BoP市場販售二手手機為例。朝陽科技大學環境工程與管理系碩士論文。
駐英國台北代表處經濟組(2022)英國政府單方面提出修改北愛爾蘭議定書所衍生的問題。https://info.taiwantrade.com/biznews/%E8%8B%B1%E5%9C%8B%E6%94%BF%E5%BA%9C%E5%96%AE%E6%96%B9%E9%9D%A2%E6%8F%90%E5%87%BA%E4%BF%AE%E6%94%B9%E5%8C%97%E6%84%9B%E7%88%BE%E8%98%AD%E8%AD%B0%E5%AE%9A%E6%9B%B8%E6%89%80%E8%A1%8D%E7%94%9F%E7%9A%84%E5%95%8F%E9%A1%8C-2533461.html
駐英國台北代表處經濟組(2023)。英國和歐盟達成協議,將電動車與電池原產地規定延長至2026年底.https://www.trade.gov.tw/Pages/Detail.aspx?nodeid=45&pid=775827
藍雪湖(2022)。普通重型機車及電動機車生命週期評估研究。國立成功大學環境工程系。