研究生: |
陳弨廣 Chao-Kuang Chen |
---|---|
論文名稱: |
基於區間第二類模糊類神經網路之螞蟻群聚最佳化演算法與其在直流馬達之應用 Ant Colony Optimization Algorithms Based on Interval Type-2 Fuzzy-Neural Networks and Its Application in DC Motor |
指導教授: |
洪欽銘
Hong, Chin-Ming 王偉彥 Wang, Wei-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 蟻群最佳化演算法 、區間第二類模糊類神經網路 、非線性系統 |
英文關鍵詞: | ant colony optimization algorithm, interval type-2 fuzzy neural networks, nonlinear systems |
論文種類: | 學術論文 |
相關次數: | 點閱:251 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一個使用螞蟻群聚最佳化演算法來調整區間第二類模糊類神經網路的參數,並將其應用於函數近似與非線性系統之適應控制器設計。區間第二類模糊系統涵蓋了第一類模糊系統,使得我們可以掌握更多系統的不確定性。在非線性系統之適應控制過程中,區間第二類模糊類神經控制器的權重値是經由螞蟻群聚最佳化演算法來即時調整,以產生適當的控制輸入。為了即時評估閉迴路系統穩定的趨勢,本文使用李亞普諾夫函數來分析其穩定性。並提出一個能量適應函數於螞蟻群聚最佳化演算法中,藉此獲得較佳的閉迴路系統的穩定度。此外,由於螞蟻群聚最佳化演算法可能在線上即時控制過程中使系統狀態進入不穩定的區域。因此,在控制結構中加入了監督控制,限制系統的狀態在穩定的範圍內。本文藉由電腦模擬結果驗證所提出方法的可行性與效能。最後,將此控制法則應用在直流伺服馬達追蹤控制實驗。
In this thesis, an ant colony optimization algorithm used to tune the parameters of interval type-2 fuzzy neural networks is proposed for function approximation and adaptive control of nonlinear systems. Type-2 fuzzy sets and systems generalize (type-1) fuzzy sets and systems so that more uncertainty can be handled. In adaptive control procedure for nonlinear systems, the weights of the interval type-2 fuzzy neural controller are online adjusted by the ant colony optimization algorithm in order to generate appropriate control input. For the purpose of on-line evaluating the stability of the closed-loop systems, an energy fitness function derived from Lyapunov function is involved in the ant colony optimization algorithm. In addition, the system states may go into the unstable region if the ant colony optimization algorithm can not instantaneously generate the appropriate weights. In order to guarantee the stability of the closed-loop nonlinear system, a supervisory controller is incorporated into the controller. Finally, some computer simulation examples and a servo motor experiment are provided to demonstrate the feasibility and effectiveness of the proposed method.
參考文獻
[1] L. A. Zadeh,“Fuzzy sets,” Inform. Control, vol. 8, pp. 338-353, 1965.
[2] P. N. Marions, “Fuzzy Logic and Its Application to Switching Systems,” IEEE Transactions on Computers, vol. C-18, no. 4, pp. 343-348, April 1969.
[3] L. X. Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994.
[4] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, no. 2, pp. 359-366, 1989.
[5] C. H. Wang, H. L. Liu, and C. T. Lin, “Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm,” IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 31, no. 3, pp. 467-475, June 2001.
[6] W. Y. Wang, T.T. Lee, C. C. Hsu, and Y. H. Li, “GA-based learning of BMF fuzzy-neural network,” IEEE Conf. Fuzzy System, vol. 2 pp. 1234-1239, May 2002.
[7] L. Yu and Y. Q. Zhang, “Evolutionary fuzzy neural networks for hybrid financial prediction,” IEEE Transactions On Man and Cybernetics Part C, vol. 35, no. 2, pp. 244-249, May 2005.
[8] W. A. Farag, V. H. Quintana, and G. Lambert-Torres, “A genetic-Based Neuro-Fuzzy approach for modeling and control of dynamical systems,” IEEE Trans on neural networks, vol. 9, no. 5, pp. 756-767, Sept. 1998.
[9] W. Y. Wang and Y. H. Li, “Evolutionary learning of BMF Fuzzy-Neural Networks Using a Reduced-Form Genetic Algorithm,” IEEE Trans on Systems, Man and Cybernetics, Part B, vol. 33, no. 2, pp. 966-976, Apr. 2003.
[10] W. Y. Wang, T. T. Lee, and C. L. Liu, “Function Approximation Using Fuzzy Neural Networks with Robust Learning Algorithm,” IEEE Trans on Systems, Man and Cybernetics, Part B, vol. 27 no. 4, pp. 740-747, Aug. 1997.
[11] C. H. Wang, W. Y. Wang, T. T. Lee, and P. S. Tseng, “Fuzzy B-Spline Membership Function (BMF) and Its Applications in Fuzzy-Neural Control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 5, May 1995.
[12] Y. G. Leu, W. Y. Wang, and T. T. Lee, “Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems,” IEEE Transactions On Robotics and Automation, vol. 15, no. 5, pp. 805-817, October1999.
[13] W. Y. Wang, Y.H. Chien, and I. H. Li, “An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 33-43, 2008.
[14] C. T. Lin. and L. Siana, “An Efficient Human Detection System Using Adaptive Neural Fuzzy Networks,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 150-160, 2008.
[15] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Transactions on HFuzzy SystemsH, vol. 9, pp.578-594, 2001.
[16] L. A. Zadeh, “The Concept of A Linguistic Variable and Its Application to Approximate Reasoning,” Informaiion Sciences, vol. 8, pp. 199-249, 1975.
[17] Q. Liang and J. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design,” IEEE Trans. On Fuzzy Systems, vol. 8, No. 5, pp. 535-550, 2000.
[18] N. Kamik, J. Mendel, and Q. Liang, “Type-2 Fuzzy Logic Systems,” IEEE Trans. On Fuzzy Systems, vol. 7, no. 6, pp. 643-658, 1999.
[19] J. Mendel and R. John, “Type-2 Fuzzy Sets Made Simple,” IEEE Trans. On Fuzq Systems, vol. 10, no. 2, pp. 117-127, 2002.
[20] I. M. Mendel, Unceriain Rule-Based Fuzzy Logic System: Inhoduciion and New Direciions, Prentice Hall: NJ, 2001.
[21] M. Mizumoto and K. Tanaka, “Some Properties of Fuuy Sets of Type 2,” Information and Control, vol. 31, pp. 312-340, 1976.
[22] H. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, vol.12, pp. 524-539, August 2004.
[23] J. M. Mendel, R. I. B. John, and F. Liu, “Interval type-2 fuzzy logicsystems made simple,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 808–821, Dec. 2006.
[24] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf. Sci., vol. 132, no. 1, pp. 195-220, Feb. 2001.
[25] M. Dorigo, M. Birattari, and T. Stiitzle, “Ant Colony Optimization,” IEEE Computational Intelligence Magazine, Nov. 2006.
[26] C. T. Man, X. X. Li, and L. Y. Zhang, “Radial Basis Function Neural Network Based on Ant Colony Optimization,” IEEE International Conference on Computational Intelligence and Security Workshops, pp. 59-62, Dec. 2007.
[27] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony optimization algorithm,” IEEE Transactions Evolutionary Computing, vol. 6, no. 4, pp. 321-332, Aug. 2002.
[28] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and load-balancing: survey and new directions,” IEEE Transactions on HUSystemsUH, Man, and Cybernetics, Part A: System and Humans, vol. 33, no. 5, pp. 560-572, Sep. 2003.
[29] J. Cassillas, O. Cordon, and F. Herrera, “Learning fuzzy rules using ant colony optimization algorithms,” Proc. Workshop on Ant Algorithms from Ant Colonies to Artificial Ants, pp. 13-21, Brussels, Belgium, Sep. 2000.
[30] J. Y. Choi and J.A. Farrell, “Adaptive observer backstepping control using neural networks,” IEEE Transactions on Neural Network, vol. 12, no. 5, pp.1103-1112, 2001.
[31] C. F. Hsu, C. M. Lin, and T. T. Lee, “Wavelet Adaptive Backstepping Control for a Class of Nonlinear Systems,” IEEE Transactions on Neural Networks, vol. 17, no. 5, Sep. 2006.
[32] Y. Zhang, P.Y. Peng, and Z.P. Jiang, “Stable Neural Controller Design for Unknown Nonlinear Systems Using Backstepping,” IEEE Transactions on Neural Networks, vol. 11, no. 6, 2000.
[33] T. Zhang, S. S. Ge and C. C. Hang, “Adaptive neural network control for strictfeedback nonlinear systems using backstepping design,” Automatica, vol. 36, pp.1835-1846, 2000.
[34] A. Isidori, Nonlinear Control System. New York: Springer-Verlag, 1989.
[35] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York: Wiley, 1995.
[36] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controller for feedback linearizable system,” IEEE Transactions Automat. Contr., vol. 36, pp. 1241-1253, 1991.
[37] C. Kwan and F. L. Lewis, “Robust backstepping control of nonlinear systems using neural networks,” IEEE Transactions on HSystemsH, Man, and Cybernetics, Part A, vol. 30, pp. 753–765, 2000.
[38] T. Knohl and H. Unbehauen, “ANNNAC—extension of adaptive backstepping algorithm with artificial neural networks,” Inst. Elect. Eng. Proc. Contr. Theory Appl., vol. 147, pp. 177–183, 2000.
[39] C. M. Kwan and F. L. Lewis, “Robust backstepping control of induction motors using neural networks,” IEEE Transactions Neural Networks, vol. 11, pp. 1178–1187, 2000.
[40] C. H. Wang, H. L. Liu, T. C. Lin, “Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems,” IEEE Transactions on HFuzzy SystemsH, vol. 10, no.1, pp. 39-49, 2002.
[41] M. Karakose and E. Akin, “Type-2 fuzzy activation function for multilayer feedforward neural networks,” in Proc. IEEE Int. Conf. Syst., Man Cybern., Oct. 10-13, 2004, vol. 4, pp. 3762-3767.
[42] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: An Autocatalytic Optimizing Process,” Technical Report No. 91-016 Revised, Politecnicodi Milano, Italy, 1991.
[43] M. Dorigo, and L. M. Gambardella, “Ant Colonies for the Traveling Salesman Problem,” BioSystems, 43: pp. 73-81.1997.
[44] M. Dorigo and L. M. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Transactions Evolutionary Computing, vol. 1, no. 1, pp. 53-66, April. 1997.
[45] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a colony of cooperating agents,” IEEE Transactions on HSystemsH, Man, and Cybernetics. Part B: Cybernetics, vol. 26, no. 1, Feb. 1996.
[46] B. Bullnheimer, R. F. Hartl, and C. Strauss, Meta-Heuristic: Advances and Trends in Local Search Paradigms for Optimization. Kluwer, Boston, pp 285-296, 1999.
[47] V. Maniezzo and A. Carbonaro, “An ANTS Heuristic for the Frequency Assignment Problem,” Future Generation Computer Systems, vol. 16, pp. 927-935, June 2000.
[48] E. G. Talbi, O. Roux, C. Fonlupt, and D. Robillard, “Parallel Ant Colonies for the quadratic assignment problem,” Future Generation Computer Systems, Vol. 17, pp. 441-449, Janu. 2001.
[49] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An Ant Colony Approach for Clustering,” Analytica Chimica Acta, vol. 509, pp. 187-195, May 2004.
[50] S. S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robustness. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[51] L. X. Wang, “A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability,” IEEE Trans. On Automatic Control, vol. 39, no. 9, pp.1845-1847, 1994.
[52] H. B. Zhang, C. U. Li, and X. F. Liao, “Stability Analysis and H∞ Controller Design of Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions,” IEEE Transactions on Systems, Man, and Cybernetics, part B, vol. 36, no. 3, June 2006.
[53] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems, Prentice Hall, 1996.
[54] C. H. Wang, C. S. Chang, and T. T. Lee, “Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN),” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 3, June 2004.