研究生: |
林恩綺 Lin, En-Chi |
---|---|
論文名稱: |
低維度手性鈣鈦礦暨高分子之光學特性研究與分析 Low-Dimensional Chiral Perovskites and Polymers Optical Analysis and Research |
指導教授: |
趙宇強
Chao, Yu-Chiang |
口試委員: |
陳奕君
Cheng, I-Chun 趙宇強 Chao, Yu-Chiang 駱芳鈺 Lo, Fang-Yuh |
口試日期: | 2022/06/23 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 鈣鈦礦 、手性鈣鈦礦 、共軛有機高分子 |
英文關鍵詞: | Perovskite, Chiral perovskite, Conjugate polymer |
研究方法: | 實驗設計法 、 行動研究法 、 準實驗設計法 、 參與觀察法 |
DOI URL: | http://doi.org/10.6345/NTNU202200694 |
論文種類: | 學術論文 |
相關次數: | 點閱:180 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Chen, B., et al., Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019. 48(14): p. 3842-3867.
2. Zhang, L., et al., Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature communications, 2017. 8(1): p. 1-8.
3. Huang, Y., W.-J. Yin, and Y. He, Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3. The Journal of Physical Chemistry C, 2018. 122(2): p. 1345-1350.
4. Zou, C., et al., Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS nano, 2020. 14(5): p. 6076-6086.
5. Billing, D.G. and A. Lemmerer, Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006. 8(9): p. 686-695.
6. Yang, X., et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature communications, 2018. 9(1): p. 1-8.
7. Pulizzi, F., Spintronics. Nature materials, 2012. 11(5): p. 367-367.
8. Minghao, Z., et al., Construction and optoelectrical properties of chiral perovskite nanomaterials. Progress in Chemistry, 2020. 32(4): p. 361.
9. Feria, D.N., et al., Exciton Delocalization in Amino-Functionalized Inorganic Mo S 2 Quantum Disks: Giant Davydov Splitting and Exchange Narrowing. Physical Review Applied, 2021. 15(2): p. 024011.
10. Ziffer, M.E., et al., Tuning H-and J-aggregate behavior in π-conjugated polymers via noncovalent interactions. The Journal of Physical Chemistry C, 2018. 122(33): p. 18860-18869.
11. Xiao, Z., et al., Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering: R: Reports, 2016. 101: p. 1-38.
12. Zhang, L., et al., Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018. 175: p. 1-19.
13. Cao, D.H., et al., 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015. 137(24): p. 7843-7850.
14. Saparov, B. and D.B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design. Chemical reviews, 2016. 116(7): p. 4558-4596.
15. Era, M., et al., Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition. Chemistry of materials, 1997. 9(1): p. 8-10.
16. Kelvin, W.T.B., The molecular tactics of a crystal. 1894: Clarendon Press.
17. Berova, N., K. Nakanishi, and R.W. Woody, Circular dichroism: principles and applications. 2000: John Wiley & Sons.
18. Ahn, J., et al., Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. Journal of the American Chemical Society, 2020. 142(9): p. 4206-4212.
19. Han, J., et al., Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Advanced Optical Materials, 2018. 6(17): p. 1800538.
20. Lu, H., et al., Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Science advances, 2019. 5(12): p. eaay0571.
21. Manchon, A., et al., New perspectives for Rashba spin–orbit coupling. Nature materials, 2015. 14(9): p. 871-882.
22. á Piepho, S. and P. á Schatz, Group Theory in Spectroscopy. 1983, Wiley, New York.
23. Han, B., et al., Magnetic circular dichroism in nanomaterials: New opportunity in understanding and modulation of excitonic and plasmonic resonances. Advanced Materials, 2020. 32(41): p. 1801491.
24. Cannon, B.L., et al., Large Davydov splitting and strong fluorescence suppression: an investigation of exciton delocalization in DNA-templated Holliday junction dye aggregates. The Journal of Physical Chemistry A, 2018. 122(8): p. 2086-2095.
25. Jelley, E.E., Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride. Nature, 1937. 139(3519): p. 631-631.
26. Abramavicius, D., et al., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chemical reviews, 2009. 109(6): p. 2350-2408.
27. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. Vol. 56. 1999: Oxford University Press on Demand.
28. Tsujimura, T., OLED display fundamentals and applications. 2017: John Wiley & Sons.
29. Schweizer, T., H. Kubach, and T. Koch, Investigations to characterize the interactions of light radiation, engine operating media and fluorescence tracers for the use of qualitative light-induced fluorescence in engine systems. Automotive and Engine Technology, 2021. 6(3): p. 275-287.
30. You, J., et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS nano, 2014. 8(2): p. 1674-1680.
31. Stranks, S.D., et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013. 342(6156): p. 341-344.
32. Tong, G., L.K. Ono, and Y. Qi, Recent Progress of All‐Bromide Inorganic Perovskite Solar Cells. Energy Technology, 2020. 8(4): p. 1900961.
33. Leung, T.L., et al., Mixed Spacer Cation Stabilization of Blue‐Emitting n= 2 Ruddlesden–Popper Organic–Inorganic Halide Perovskite Films. Advanced Optical Materials, 2020. 8(4): p. 1901679.
34. Lee, J.-W., et al., Rethinking the A cation in halide perovskites. Science, 2022. 375(6583): p. eabj1186.
35. Odysseas Kosmatos, K., et al., Μethylammonium chloride: a key additive for highly efficient, stable, and up‐scalable perovskite solar cells. Energy & Environmental Materials, 2019. 2(2): p. 79-92.
36. Har-Lavan, R., et al., Molecular field effect passivation: Quinhydrone/methanol treatment of n-Si (100). Journal of Applied Physics, 2013. 113(8): p. 084909.
37. Long, G., et al., Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018. 12(9): p. 528-533.
38. Liang, C., et al., Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021. 6(1): p. 38-45.
39. Gao, W., et al., Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells. Journal of Energy Chemistry, 2022. 68: p. 789-796.
40. Clark, J., et al., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Physical review letters, 2007. 98(20): p. 206406.
41. Spano, F.C., The spectral signatures of Frenkel polarons in H-and J-aggregates. Accounts of chemical research, 2010. 43(3): p. 429-439.
42. Benz, F., et al., Concentration quenching of the luminescence from trivalent thulium, terbium, and erbium ions embedded in an AlN matrix. Journal of luminescence, 2014. 145: p. 855-858.