簡易檢索 / 詳目顯示

研究生: 郭品纖
Kuo, Pin-Hsien
論文名稱: 中學生閱讀科學圖文與不同語意透明度之學術詞彙的認知處理策略──眼動追蹤研究
The Processing Strategies for Illustrated Science Reading and Chinese Academic Words with Different Semantic Transparency among Seventh-Grade Students: An Eye-Tracking Study
指導教授: 簡郁芩
Jian, Yu-Cin
口試委員: 曾玉村
Tzeng, Yuh-Tsuen
邱國力
Chiou, Guo-Li
口試日期: 2021/06/23
學位類別: 碩士
Master
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 閱讀能力學術詞彙科學圖文眼動追蹤閱讀策略
英文關鍵詞: reading ability, academic words, illustrated science text, eye tracking, reading strategy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100695
論文種類: 學術論文
相關次數: 點閱:118下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科學文章是典型的多元表徵文本(有文字與圖表),且具有概念密度高的學
    術詞彙,因此學生在閱讀文章時常有理解困難。本研究藉由眼動追蹤的方式探討
    不同閱讀能力的中學生閱讀科學圖文的認知歷程與處理策略,以及遇到語意透明
    度高(意譯)與低(音譯)之學術詞彙時,讀者如何處理。本研究有效樣本為 65
    名七年級生,藉由前測進行閱讀能力分組,閱讀四篇科學圖文(含有意譯與音譯
    的科學學術詞彙各兩篇)後回答自由回憶和閱讀理解題,最後進行提示回溯性放
    聲思考(Cued Retrospective Think Aloud, CRTA)。研究結果發現,讀者閱讀含有
    意譯與音譯的文本整體的閱讀理解測驗差異並不大,不過閱讀能力與整體閱讀理
    解和自由回憶表現呈現顯著正相關。但從眼動指標來看,在學術詞彙的處理層
    次,各能力的中學生於閱讀音譯的科學詞彙時,第一次連續凝視時間(gaze
    duration)都較意譯學術詞彙長,反映中學生難以從詞素意義理解科學詞彙含意,
    因此需要比較長的時間解碼語意透明度低的科學詞彙,而後轉移眼動位置到科學
    詞彙附近的句子,藉由上下文推測詞義;而在文章處理的層次,不論閱讀能力高
    中低,中學生皆以文字為訊息理解之主要來源,讀文字的總凝視時間比例較讀圖
    片的比例高,但學生們清楚表格類插圖的資訊量高且為統整後的資訊,因此相較
    於於其他類型的圖片,學生會花較多時間讀統整比較表。提示回溯性放聲思考的
    資料則顯示高能力學生多運用推論與整合層次的閱讀策略(如運用插圖訊息、整
    合圖文訊息),得以正確辨識圖類型與其資訊量以隨時調整適當的閱讀策略;中
    能力學生常使用提取訊息的策略(如找重點、重讀);低能力學生則常會用負向
    閱讀處理方式(如重點認知錯誤、不清楚閱讀目的),而難以在閱讀科普文章時
    進行有效的學習理解。建議於實務現場中,應考量學生之能力差異,並輔以教學
    協助學生找到最適合的閱讀策略。

    Science texts are typical texts with multiple representations (with texts and diagrams), containing academic words with high conceptual density. Therefore, students often face difficulty understanding science texts. This study uses eye tracking to explore the cognitive process and strategies of seventh-grade students with different reading abilities in reading illustrated scientific texts, and how readers deal with academic words with high (paraphrase) and low (transliteration) semantic transparency. Seventh-grade students (N=65) were divided into groups of reading ability through a pre-test. After reading four science texts (two with academic words of paraphrase and two with academic words of transliteration), they answered free recall and reading comprehension questions, and finally participated in cued retrospective think aloud (CRTA).
    The results show that the reading-comprehension for texts containing academic words (paraphrase and transliteration) is not different. However, reading ability is significantly positively correlated with reading comprehension and free-recall performance. When reading transliterated words, students of all abilities have a longer gaze duration than when reading paraphrasing words, indicating the difficulty in understanding the meaning of academic words from morphemes. Therefore, it takes a relatively long time to decode academic words with low semantic transparency and subsequently use the reading strategy of inferring the meaning of the word from the context to understand the academic words. Furthermore, regardless of the reading ability, students use the text part as the main source of reading comprehension; the proportion of total fixation duration for reading text is higher than reading diagrams. However, the students realize that the form illustration has a high amount of integrated information. Therefore, compared with other types of diagrams, students spent more time reading the form illustration.
    The eye movement retrospective think aloud data shows that high-ability students often use inference and integrated reading strategies (such as use of illustrated information, integrated texts, and diagrams) to correctly identify the type of picture and the amount of information to adjust the appropriate reading strategy at any time. Middle-ability students often use information extraction strategies (such as finding key points, rereading); low-ability students often use negative reading processing methods (such as misunderstanding key points, unclear reading purpose), and it is difficult to learn and understand effectively when reading popular science texts.
    It is recommended that the differences in students’ reading ability should be considered, and teaching should be supplemented to help students find the most suitable reading strategy.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 名詞釋義 4 第二章 文獻探討 7 第一節 中學生閱讀科學文本的困難 7 第二節 中文學術詞彙的眼動研究 14 第三節 圖文閱讀理論基礎 16 第四節 科學圖文閱讀的眼動研究 20 第五節 研究問題 25 第三章 研究方法 27 第一節 研究對象與研究設計 27 第二節 實驗材料與測驗工具 27 第三節 研究程序 34 第四節 資料處理與分析 35 第四章 研究結果 39 第一節 測驗資料分析 39 第二節 眼動與提示回溯性放聲思考資料分析 40 第三節 相關分析 62 第五章 討論與建議 65 第一節 綜合討論 65 第二節 結論 69 第三節 研究限制與建議 69 參考文獻 71 附錄 81

    中文部分
    王孜甯、簡郁芩(付梓中):科學圖文閱讀眼動研究之系統回顧。教育心理學報。
    木村博之(2012):設計的邏輯:Infographics 深入人心的視覺法則(楊宗訓譯)。旗標出版。
    中央氣象局(2013):聽見雨的聲音—雷達。取自中央氣象局數位科普網站:https://reurl.cc/a9xAl7,2020 年 09 月 30 日。
    水精靈(2015):科學少年雜誌:科學閱讀素養,特輯No.2(理化篇)。遠流出版。
    吳訓生(2002):國小高、低閱讀理解能力學生閱讀理解策略之比較研究。特殊教育學報,16,65–104。https://doi.org/10.6768/JSE.200209.0065
    李健明(2017):為什麼要用抗生素:談細菌與抗藥性。取自SlidePlayer網站:https://slidesplayer.com/slide/11584720/,2020 年 9 月 26 日。
    柯華葳、陳明蕾、游婷雅(2017):掌握策略快樂閱讀。教育部國民及學前教育署。
    柯華葳、詹益綾(2007):國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429–449。https://doi.org/10.7108/PT.200712.0429
    段曉林(2000):放聲思考 Thinking Aloud。取自國家教育研究院:教育大辭書網站:http://terms.naer.edu.tw/detail/1306468/,2020 年 09 月 16 日。
    連啟舜、陳弘輝、曾玉村(2016):閱讀之摘要歷程探究。教育心理學報,48(2),133–158。https://doi.org/10.6251/BEP.20151124
    張昊(2017):說高溫就高溫 天氣預報這麼准 我也很絕望啊!。取自科普中國網址:http://www.ifuun.com/a20177123770814/,2020 年 9 月 30 日。
    張菀真、辜玉旻(2011):國小高、低閱讀能力學童圖文閱讀的理解策略。臺北市立教育大學學報:教育類。https://doi.org/10.6336/JUTe/2011.42(2)4
    黃瑋絜(2020):醫學史上的里程碑:盤尼西林的首次人體試驗。取自科技大觀園網址:https://reurl.cc/MAM78L,2020 年 9 月 26 日。
    雷雅淇(2019):一樣血輸百樣人?有沒有能讓血液變成泛用血型的八卦。取自泛科學網址:https://pansci.asia/archives/158347,2020 年 09 月 28 日。
    楊瑞源、莊紫晴(2019):浮動式光達在離岸風場的應用。取自科技大觀園網址:https://reurl.cc/VEmaaN,2020 年 9 月 30 日。
    劉育志(2020):科學少年學習誌:科學閱讀素養生物篇1。遠流出版。
    劉嘉茹、侯依伶(2011):以眼動追蹤技術探討先備知識對科學圖形理解的影響。教育心理學報,43(S),227–249。https://doi.org/10.1016/S0093-934X(02)00520-5
    陳世文、楊文金(2008):學生對科學教科書詞彙關係理解之分析。教科書研究,1(2),101–127。https://doi.org/10.6481/JTR.200812.0101
    陳定安(1998):英漢比較與翻譯。中國對外翻譯出版公司。
    曾玉村、連啟舜(2016):讀懂最重要:提升素養促進學習的教育精髓。教育研究月刊,269,32–44。https://doi.org/10.3966/168063602016090269003
    簡郁芩、吳昭容(2012):以眼動型態和閱讀測驗表現探討箭頭在科學圖文閱讀中的圖示效果。中華心理學刊,54(3),385–402。 https://doi.org/10.6129/CJP.2012.5403.07
    嚴一(2020):不只用來算命——淺談血型的分類與轉換。取自Self-Learning, Enjoy Knowledge網址:https://www.slekmed.com/about, 2020 年 09 月 28 日。
    KK健康漫畫科普(2015):休克可致死,急救無小事!。取自Kknews網址:https://kknews.cc/zh-cn/health/5gvo9xl.html,2020 年 9 月 26 日。
    Whyjay(2013):雷達Level UP:光達。取自泛科學網址:https://pansci.asia/archives/42202,2020 年 09 月 30 日。
    W.R. Su(2021):過敏性休克:原因、症狀、診斷、治療。取自Hello醫師網址:https://helloyishi.com.tw/healthy-habits/first-aid/anaphylactic-shock/,2020 年 9 月 26 日。

    西文部分
    Andrews, S., Miller, B., & Rayner, K. (2004). Eye movements and morphological segmentation of compound words: There is a mouse in mousetrap. European Journal of Cognitive Psychology, 16(1–2), 285–311. https://doi.org/10.1080/09541440340000123
    Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556–559. https://doi.org/10.1126/science.1736359
    Baddeley, A. D. (1997). Human memory: theory and practice. Psychological Publishing.
    Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1–17. https://doi.org/10.1007/s00897970138a
    Brusnighan, S. M., & Folk, J. R. (2012). Combining contextual and morphemic cues is beneficial during incidental vocabulary acquisition: Semantic transparency in novel compound word processing. Reading Research Quarterly, 47(2), 172–190. https://doi.org/10.1002/RRQ.015
    Bulman, L. (1985). Teaching language and study skills in secondary science. ERIC.
    Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155–166. https://doi.org/10.1016/j.learninstruc.2009.02.014
    Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and instruction, 8(4), 293–332. https://doi.org/10.1207/s1532690xci0804_2
    Chen, M. -J., & Weekes, B. S. (2004). Effects of semantic radicals on Chinese character categorization and character decision. Chinese Journal of Psychology, 46(2-3), 181–196. https://doi.org/10.6129/CJP.2004.460203.07
    Chiou, G.-L., & Tsai, M.-J. (2014). Patterns of simulation-based physics learning: An eye-movement analysis. ICCE 2014, 16.
    Chung, F. H. K., & Leung, M. T. (2008). Data analysis of Chinese characters in primary school corpora of Hong Kong and mainland China: Preliminary theoretical interpretations. Clinical Linguistics & Phonetics, 22(4–5), 379–389. https://doi.org/10.1080/02699200701776757
    Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210. https://doi.org/10.1007/BF01320076
    Eggins, S., Wignell, P., & Martin, J. R. (1993). The discourse of history: Distancing the recoverable past. In M. Ghadessy (Ed.), Register analysis: Theory andpractice (pp. 75–109). Pinter.
    Ekstrom, R. B., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests. Educational testing service.
    Glöckner, A., & Herbold, A. K. (2011). An eye‐tracking study on information processing in risky decisions: Evidence for compensatory strategies based on automatic processes. Journal of Behavioral Decision Making, 24(1), 71–98. https://doi.org/10.1002/bdm.684
    Guan, Z., Lee, S., Cuddihy, E., & Ramey, J. (2006). The validity of the stimulated retrospective think-aloud method as measured by eye tracking. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/1124772.1124961
    Guo, D., McTigue, E. M., Matthews, S. D., & Zimmer, W. (2020). The impact of visual displays on learning across the disciplines: A systematic review. Educational Psychology Review, 32 , 627–656. https://doi.org/10.1007/s10648-020-09523-3
    Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations—a meta-analytic review. Educational Psychology Review, 22(3), 245–269. https://doi.org/10.1007/s10648-010-9126-7
    Halliday, M. A. (1993). Towards a language-based theory of learning. Linguistics and Education, 5(2), 93–116. https://doi.org/10.1016/0898-5898(93)90026-7
    Halliday, M. A. (2004). Appendix: The functional basis of language. Class, Codes, and Control, 343–366.
    Halliday, M. A., & Matthiessen, C. M. (2014). An introduction to functional grammar. Routledge. https://doi.org/10.4324/9780203783771
    Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low-and high-ability children. Contemporary Educational Psychology, 24(2), 95–123. https://doi.org/10.1006/ceps.1998.0987
    Hegarty, M., & Just, M.-A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717–742. https://doi.org/10.1006/jmla.1993.1036
    Hsiao, J. H.-w., & Shillcock, R. (2006). Analysis of a Chinese phonetic compound database: Implications for orthographic processing. Journal of Psycholinguistic Research, 35(5), 405–426. https://doi.org/10.1007/s10936-006-9022-y
    Hsiao, J. H.-W., Shillcock, R., & Lavidor, M. (2007). An examination of semantic radical combinability effects with lateralized cues in Chinese character recognition. Perception & Psychophysics, 69(3), 338–344. https://doi.org/10.3758/BF03193754
    Jian, Y.-C. (2020). Teaching fourth-grade students of different reading abilities to read biological illustrations and integrate in-text information: an empirical experiment. Research in Science Education,50(6), 2269–2282. https://doi.org/10.1007/s11165-018-9778-8
    Jian, Y.-C., & Ko, H.-W. (2017). Influences of text difficulty and reading ability on learning illustrated science texts for children: An eye movement study. Computers & Education, 113, 263–279. https://doi.org/10.1016/j.compedu.2017.06.002
    Jian, Y.-C., Su, J.-H., & Hsiao, Y.-R. (2019). Differentiated processing strategies for science reading among sixth-grade students: Exploration of eye movements using cluster analysis. Computers & Education, 142, 103652. https://doi.org/10.1016/j.compedu.2019.103652
    Jian, Y.-C., & Wu, C.-J. (2015). Using eye tracking to investigate semantic and spatial representations of scientific diagrams during text-diagram integration. Journal of Science Education and Technology, 24(1), 43–55. https://doi.org/10.1007/s10956-014-9519-3
    Jian, Y. C. (2016). Fourth graders' cognitive processes and learning strategies for reading illustrated biology texts: Eye movement measurements. Reading Research Quarterly, 51(1), 93–109. https://doi.org/10.1002/rrq.125
    Jian, Y. C., Chen, M. L., & Ko, H. W. (2013). Context Effects in Processing of Chinese Academic Words: An Eye‐Tracking Investigation. Reading Research Quarterly, 48(4), 403–413. https://doi.org/10.1002/rrq.56
    Jian, Y. C., & Ko, H. W. (2014). Investigating the effects of background knowledge on Chinese word processing during text reading: Evidence from eye movements. Journal of Research in Reading, 37(S1), S71–S86. https://doi.org/10.1111/j.1467-9817.2012.01534.x
    Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology: Applied, 18(2), 178–191. https://doi.org/10.1037/a0026923
    Lee, S.-H., Hung, K.-C., & Chou, T.-L. (2014). A longitudinal study of association strength and semantic transparency in semantic processing of Chinese characters in children. Chinese Journal of Psychology, 56(1), 1–11. https://doi.org/10.6129/CJP.20130501
    Levin, J. R. (1982). Pictures as prose-learning devices. In A. Flammer & W. Kintsch (Eds), Advances in psychology (Vol. 8, pp. 412–444). Elsevier. https://doi.org/10.1016/S0166-4115(08)62709-0
    Li, L., Marinus, E., Castles, A., Yu, L., & Wang, H.-C. (2019). Eye-tracking the effect of semantic decoding on orthographic learning in Chinese. https://doi.org/10.31234/osf.io/ekxd6
    Li, X., Liu, P., & Rayner, K. (2011). Eye movement guidance in Chinese reading: Is there a preferred viewing location? Vision Research, 51(10), 1146–1156.
    Libben, G. (1998). Semantic transparency in the processing of compounds: Consequences for representation, processing, and impairment. Brain and Language, 61(1), 30–44. https://doi.org/10.1006/brln.1997.1876
    Libben, G., Gibson, M., Yoon, Y. B., & Sandra, D. (2003). Compound fracture: The role of semantic transparency and morphological headedness. Brain and Language, 84(1), 50–64. https://doi.org/10.1016/S0093-934X(02)00520-5
    Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172–187.
    Mason, L., Pluchino, P., Tornatora, M. C., & Ariasi, N. (2013a). An eye-tracking study of learning from science text with concrete and abstract illustrations. The Journal of Experimental Education, 81(3), 356–384. https://doi.org/10.1080/00220973.2012.727885
    Mason, L., Tornatora, M. C., & Pluchino, P. (2013b). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60(1), 95–109. https://doi.org/10.1016/j.compedu.2012.07.011
    Mayer, R. E. (2002). Multimedia learning. Psychology of learning and motivation (Vol. 41, pp. 85–139). Elsevier. https://doi.org/10.1016/S0079-7421(02)80005-6
    Mayer, R. E. (2003). The promise of multimedia learning: using the same instructional design methods across different media. Learning and Instruction, 13(2), 125–139. https://doi.org/10.1016/S0959-4752(02)00016-6
    Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. Cambridge university press.
    McTigue, E. M., & Flowers, A. C. (2011). Science visual literacy: Learners' perceptions and knowledge of diagrams. The Reading Teacher, 64(8), 578–589. https://doi.org/10.1598/RT.64.8.3
    Moje, E. B. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52(2), 96–107. https://doi.org/10.1598/JAAL.52.2.1
    Moore, D. M., & Dwyer, F. M. (1994). Effect of cognitive style on test type (visual or verbal) and color coding. Perceptual and Motor Skills, 79(3_suppl), 1532–1534. https://doi.org/10.2466/pms.1994.79.3f.1532
    National Academies of Sciences, E., & Medicine. (2016). Science literacy: Concepts, contexts, and consequences. https://doi.org/10.17226/23595
    Or-Kan, S. (2016). Processing academic science reading texts through context effects: Evidence from eye movements. EURASIA Journal of Mathematics, Science and Technology Education, 13(3), 771–790. https://doi.org/10.12973/eurasia.2017.00642a
    Packard, J. L. (2000). The morphology of Chinese: A linguistic and cognitive approach. Cambridge University Press.
    Paivio, A. (1971). Imagery and language. Imagery (pp. 7–32). Elsevier.
    Paivio, A. (1990). Mental representations: A dual coding approach. Oxford University Press.
    Piaget, J. (1970). Science of education and the psychology of the child. Trans. D. Coltman.
    Samuelstuen, M. S., & Bråten, I. (2005). Decoding, knowledge, and strategies in comprehension of expository text. Scandinavian Journal of Psychology, 46(2), 107–117. https://doi.org/10.1111/j.1467-9450.2005.00441.x
    Scheiter, K., Schubert, C., & Schüler, A. (2018). Self‐regulated learning from illustrated text: Eye movement modelling to support use and regulation of cognitive processes during learning from multimedia. British Journal of Educational Psychology, 88(1), 80–94. https://doi.org/10.1111/bjep.12175
    Schellings, G., Aarnoutse, C., & Van Leeuwe, J. (2006). Third-grader's think-aloud protocols: Types of reading activities in reading an expository text. Learning and Instruction, 16(6), 549–568. https://doi.org/10.1016/j.learninstruc.2006.10.004
    Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156. https://doi.org/10.1016/S0959-4752(02)00017-8
    Seels, B. A. (1994). Visual literacy: The definition problem. Visual literacy: A spectrum of visual learning, 97–112.
    Shanahan, T., & Shanahan, C. (2008). Teaching disciplinary literacy to adolescents: Rethinking content-area literacy. Harvard Educational Review, 78(1), 40–59. https://doi.org/10.17763/haer.78.1.v62444321p602101
    Shu, H., Chen, X., Anderson, R. C., Wu, N., & Xuan, Y. (2003). Properties of school Chinese: Implications for learning to read. Child Development, 74(1), 27–47. https://doi.org/10.1111/1467-8624.00519
    Snow, C. (2002). Reading for understanding: Toward an R&D program in reading comprehension. Rand Corporation.
    Snow, C., & Moje, E. (2010). Why is everyone talking about adolescent literacy? Phi Delta Kappan, 91(6), 66–69. https://doi.org/10.1177/003172171009100616
    Van Gog, T., Paas, F., Van Merriënboer, J. J., & Witte, P. (2005). Uncovering the problem-solving process: Cued retrospective reporting versus concurrent and retrospective reporting. Journal of Experimental Psychology: Applied, 11(4), 237–244. https://doi.org/10.1037/1076-898X.11.4.237
    Van Merriënboer, J. J. (1997). Training complex cognitive skills: A four-component instructional design model for technical training. Educational Technology.
    Wellington, J., & Osborne, J. (2001). Language and literacy in science education. McGraw-Hill Education (UK).
    Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345–376. https://doi.org/10.1207/s15326985ep2404_2

    下載圖示
    QR CODE