簡易檢索 / 詳目顯示

研究生: 翁驊成
Weng, Hua-Cheng
論文名稱: 基於人體姿勢估計之跆拳道側踢分析
Quality Assessment of Taekwondo Side Kick Stance Based on Human Pose Estimation
指導教授: 賀耀華
Ho, Yao-Hua
口試委員: 陳伶志
Chen, Ling-Jyh
李佳融
Lee, Chia-Jung
賀耀華
Ho, Yao-Hua
口試日期: 2022/12/08
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 跆拳道品勢側踢分析動作評估運動評分機器學習神經網路
英文關鍵詞: Taekwondo Poomsae, Side kick analysis, Quality assessment, Machine learning, Neural network
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300028
論文種類: 學術論文
相關次數: 點閱:153下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在跆拳道品勢 (Taekwondo Poomsae) 比賽或訓練中,評估該運動表現唯基於專家及教練的觀察,並根據其自身經驗會有不同的想法,存在多種公平性問題,此外,教練也無法全天候指導所有學員,人們對於量化評價方法和工具之需求日益增加。然而,跆拳道快速的肢體動作與結構極端繁複的技術,使量化困難且不易評估。

    跆拳道品勢單元技術中,側踢 (Side Kick) 屬於較複雜、評分比重較高的項目,因此,本論文針對側踢先行試驗,我們以臺北市立龍山國中以及國立臺灣師範大學的跆拳道品勢選手作為研究對象,並參考專家建議之評分標準,提出基於人體姿勢估計 (Human Pose Estimation) 之跆拳道側踢分析,通過專業認證的跆拳道側踢評分系統 (Taekwondo Side Kick Assessment System, SideKick),能夠有效地量化選手運動數據,分析並評估其側踢表現。

    本研究中,我們首先建立了具高度公信力的跆拳道側踢資料集,由專業品勢教練進行動作質量評分;接著透過人體姿勢估計的方式,偵測人體關節點座標,精確獲取肢體運動角度及高度變化數據,使得運動特徵不易受場景影響,將攝影鏡頭校正難度降低;最後,我們參考專家提供之側踢建議量化特徵,分析各特徵的重要性排序,並利用機器學習的方式,訓練運動時空特徵及專家建議特徵,來預測選手整體側踢表現分數。

    實驗以均方根誤差與交叉驗證評估多種回歸模型方法,最終選擇卷積神經網路模型,作為系統之評分模組。結果顯示實際應用之誤差為0.69,經信度檢驗,其結果也達顯著相關,在容許誤差為1的範圍內,準確率達86%。本研究提出之SideKick系統不需花費大量金錢及人力,且錄製設備取得容易。學員們能藉由本系統了解自身能力,教練們也可以在不限任何時間或地點下指導學員,提升團體訓練效益,並為未來遠程跆拳道品勢評價系統奠定基礎。

    In Taekwondo Poomsae training and competition, the only way to evaluate performance is based on the observations of experts and coaches. On account of their different experience and possibly biased appraisals, there is a growing demand for quantitative assessment methods and tools. However, the rapid physical movements and extremely complex structure of Taekwondo techniques make it difficult to quantify and evaluate.

    The side kick is one of the more complex and heavily weighted aspects of the Taekwondo technique. Therefore, this paper uses side kick as a first test, we propose a Taekwondo side kick assessment system based on Human Pose Estimation called SideKick. Our SideKick system enables us to quantify the athletes’ side kick data, then it can automatically analyze and evaluate their performance.

    In the proposed SideKick system in this study, we first established a highly credible Taekwondo side kick dataset scored by professional judges and coaches. Then, we used human pose estimation to detect the coordinates of the body's joints and obtain precise data on the angle and height changes of the body movement. Finally, we analyze these values relying on the experts’ suggestions and use machine learning to assess the quality of side kick.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 3 第二章 文獻探討 4 第一節 現有跆拳道監測方法與系統 4 2-1-1 基於慣性感測器 (Inertial Measurement Unit, IMU) 5 2-1-2 基於影像監測 5 第二節 人體姿勢估計背景 6 2-2-1 回歸方法 (Direct Regression) 6 2-2-2 基於熱圖 (Heatmap Based) 7 2-2-3 MediaPipe & BlazePose 7 第三節 時序資料之濾波法 9 第四節 運動評估預測相關方法 11 2-4-1 傳統機器學習 12 2-4-2 人工神經網路 14 2-4-3 運動評估研究 19 第五節 動態時間扭曲 20 第三章 研究方法 22 第一節 跆拳道側踢評分系統概述 22 第二節 資料處理 23 3-2-1 資料蒐集與影像評分 24 3-2-2 資料前處理 28 3-2-3 側踢特徵選取與提取 34 第三節 模型訓練 40 3-3-1 資料標準化 (Data Standardization) 41 3-3-2 資料分割 (Data Splitting) 42 3-3-2 模型評估 42 第四節 系統設計 44 第四章 實驗結果與分析 47 第一節 實驗環境 47 4-1-1 實驗設備與實驗設定 47 4-1-2 實驗場所與人員 48 4-1-3 實驗方法與流程 48 第二節 特徵分析 49 第三節 評分模型評估 51 4-3-1 評估方法 51 4-3-2 模型評估基準 (Baseline) 53 4-3-3 教練模型 (Coach Model) 53 4-3-4 動態時間扭曲 (Dynamic Time Wrapping, DTW) 54 4-3-5 神經網路模型參數分析 56 4-3-6 模型比較結果 59 第四節 實際應用結果與討論 59 第五章 結論與未來展望 62 參考文獻 64

    賀敏彥、李佳融、張家豪 (2020)。中國跆拳道品勢執裁標準現狀研究。跆拳道學刊,7 期,83- 91 頁。
    品勢「跆」雙銅 總教練:裁判太主觀. Retrieved June 10, 2022, from https://sports.ltn.com.tw/news/paper/1225909
    Ahmadi, A., Rowlands, D., & James, D. A. (2009). Towards a wearable device for skill assessment and skill acquisition of a tennis player during the first serve. Sports Technology, 2(3-4), 129-136.
    Pueo, B. (2016). High speed cameras for motion analysis in sports science. Journal of Human Sport and Exercise, 11(1), 53-73.
    Tran, D., Ray, J., Shou, Z., Chang, S.-F., & Paluri, M. (2017). Convnet architecture search for spatiotemporal feature learning. ArXiv Preprint ArXiv:1708.05038.
    Lee, J., & Jung, H. (2020). TUHAD: Taekwondo unit technique human action dataset with key frame-based cnn action recognition. Sensors, 20(17), 4871.
    陳銨漵 (2016)。大專跆拳道品勢動作難易度之主觀認知分析。跆拳道學刊,3 期。
    世大運品勢奪牌多「動作標準」成評分關鍵. Retrieved June 8, 2022, from https://news.tvbs.com.tw/life/759297
    品勢poomsae, 教育部體育運動大辭典, 中華民國:教育部, 2022. Retrieved June 27, 2022, from https://sportspedia.perdc.ntnu.edu.tw/content.php?wid=3384
    World Taekwondo. Retrieved December 8, 2022, from http://www.worldtaekwondo.org/rules-wt/rules.html?sc=02
    Seel, T., Raisch, J., & Schauer, T. (2014). IMU-Based Joint Angle Measurement for Gait Analysis. Sensors, 14(4), Article 4.
    Choi, C.-H., & Joo, H.-J. (2016). Motion recognition technology based remote Taekwondo Poomsae evaluation system. Multimedia Tools and Applications, 75(21), 13135-13148.
    Iqbal, M., Suhendra, A., Mutiara, A. B., & others. (2018). Similarity Analysis of Taekwondo Movement Using Data Motion. 2018 Third International Conference on Informatics and Computing (ICIC), 1-6.
    Yang, J., Kim, K. Y., & Lee, W. J. (2021). The Distinction of Anomalous Kicks in Taekwondo Using IMU Sensors. Research in Dance and Physical Education, 5(3), 19-36.
    Yamanaka, S., Shima, K., Mutoh, A., Moriyama, K., Matsui, T., & Inuzuka, N. (2021). Evaluation of martial arts demonstration focusing on peak timing using acceleration data. 2021 IEEE 10th Global Conferenc
    Sigal, L. (2021). Human pose estimation. In Computer Vision: A Reference Guide (pp. 573-592). Springer.
    Dang, Q., Yin, J., Wang, B., & Zheng, W. (2019). Deep learning based 2d human pose estimation: A survey. Tsinghua Science and Technology, 24(6), 663-676.
    Zheng, C., Wu, W., Chen, C., Yang, T., Zhu, S., Shen, J., Kehtarnavaz, N., & Shah, M. (2020). Deep Learning-Based Human Pose Estimation: A Survey.
    Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1653-1660.
    Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4724-4732.
    Lugaresi, C., Tang, J., Nash, H., McClanahan, C., Uboweja, E., Hays, M., Zhang, F., Chang, C.-L., Yong, M. G., Lee, J., & others. (2019). Mediapipe: A framework for building perception pipelines.
    Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., & Grundmann, M. (2020). Blazepose: On-device real-time body pose tracking. ArXiv Preprint ArXiv:2006.10204.
    Pandey, V., & Giri, V. K. (2016). High frequency noise removal from ECG using moving average filters. 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems
    Justusson, B. (1981). Median filtering: Statistical properties. Two-Dimensional Digital Signal Prcessing II, 161-196.
    Ma, W., Li, Q., Li, J., Ding, L., & Yu, Q. (2021). A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks. Information Processing in Agriculture
    Azad, M. K., Uddin, S., & Takruri, M. (2018). Support vector regression based electricity peak load forecasting. 2018 11th International Symposium on Mechatronics and Its Applications (ISMA), 1-5.
    Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., & Zhang, H. (2021). Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environmental Research, 202,
    Rasaei, Z., & Bogaert, P. (2019). Spatial filtering and Bayesian data fusion for mapping soil properties: A case study combining legacy and remotely sensed data in Iran. Geoderma, 344, 50-62.
    Zhang, L. (2020). Design of a sports culture data fusion system based on a data mining algorithm. Personal and Ubiquitous Computing, 24(1), 75-86.
    Wang, Z., Yan, W., & Oates, T. (2017). Time series classification from scratch with deep neural networks: A strong baseline. 2017 International Joint Conference on Neural Networks (IJCNN), 1578-1585.
    Zhang, C., Liu, L., Xiang, Q., Li, J., & Ren, X. (2020). Sports pose estimation based on lstm and attention mechanism. International Conference on 5G for Future Wireless Networks, 538-550.
    Le, X.-H., Ho, H. V., Lee, G., & Jung, S. (2019). Application of long short-term memory (LSTM) neural network for flood forecasting. Water, 11(7), 1387.
    Yan, R., Liao, J., Yang, J., Sun, W., Nong, M., & Li, F. (2021). Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Systems
    Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398.
    Ng, W., Minasny, B., Montazerolghaem, M., Padarian, J., Ferguson, R., Bailey, S., & McBratney, A. B. (2019). Convolutional neural network for simultaneous prediction of several soil properties using visibl
    Kawamura, K., Nishigaki, T., Andriamananjara, A., Rakotonindrina, H., Tsujimoto, Y., Moritsuka, N., Rabenarivo, M., & Razafimbelo, T. (2021). Using a one-dimensional convolutional neural network on visible
    Wibawa, A. P., Utama, A. B. P., Elmunsyah, H., Pujianto, U., Dwiyanto, F. A., & Hernandez, L. (2022). Time-series analysis with smoothed Convolutional Neural Network. Journal of Big Data, 9(1), 1-18.
    Zhou, Z., Shakya, S., & Sha, Z. (2017). Predicting Countermovement Jump Heights by Time Domain, Frequency Domain, and Machine Learning Algorithms. 2017 10th International Symposium on Computational Intelli
    Pirsiavash, H., Vondrick, C., & Torralba, A. (2014). Assessing the quality of actions. European Conference on Computer Vision, 556-571.
    Oytun, M., Tinazci, C., Sekeroglu, B., Acikada, C., & Yavuz, H. U. (2020). Performance prediction and evaluation in female handball players using machine learning models. IEEE Access, 8, 116321-116335.
    黃致巽 (2013)。基於動態時間扭曲之人體姿勢辨識。國立臺灣師範大學資訊工程學系碩士論文,臺北市。
    Kate, R. J. (2016). Using dynamic time warping distances as features for improved time series classification. Data Mining and Knowledge Discovery, 30(2), 283–312.
    葉重新 (1989)。常模參照與標準參照測驗信度的類型及其分析方法。國教輔導 ,29 期。
    Hee, O. C. (2014). Validity and Reliability of the Customer-Oriented Behaviour Scale in the Health Tourism Hospitals in Malaysia. International Journal of Caring Sciences, 7(3).
    吳統雄 (2018)。態度與行為研究的信度與效度:理論、應用、反省。民意學術專刊<原版>,29-53 頁。
    吳明翰 (2013)。2011跆拳道品勢錦標賽大專男女組裁判評分研究。國立臺灣師範大學運動競技學系碩士論文,臺北市。
    Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66.
    Field, A. P. (2005). Kendall’s coefficient of concordance. Encyclopedia of Statistics in Behavioral Science, 2, 1010-1011.
    Kalantari Khandani, M., & Mikhael, W. B. (2021). Effect of sparse representation of time series data on learning rate of time-delay neural networks. Circuits, Systems, and Signal Processing, 40(6), 3007-30

    下載圖示
    QR CODE