研究生: |
游旻寯 Yu, Min-Chun |
---|---|
論文名稱: |
探討差異化專題導向於STEM實作課程對學習成效之影響 A Study of Exploring the Impact on Learning Effect of Differentiated Instruction Project-Based Learning in STEM Hands-on Courses |
指導教授: |
蕭顯勝
Hsiao, Hsien-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 差異化教學 、STEM 、實作課程 、專題導向學習 、學習低成就 |
英文關鍵詞: | Differentiated Instruction, STEM, Hands-on activity, PBL, Low achievement |
DOI URL: | http://doi.org/10.6345/NTNU201900629 |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
STEM(Science, Technology, Engineering, and Mathematics)是近年來培養跨科際人才的重點,透過跨學科整合的方式來促進學生多領域之發展。在STEM實作課程的知識傳授中,讓學習者了解如何將所學知識應用在實作中,在專題導向學習(Project-based Learning, PBL)強調學生於「真實情境」中學習來解決問題。差異化教學(Differentiated Instruction)則貫徹「因材施教」的宗旨,給予學生齊頭式平等的學習機會,並縮小低成就學生在學習上的落差。
本研究探討差異化專題導向學習於STEM實作課程對學習成效(STEM知識、執行功能、自我效能、實作能力)之影響。教學過程中,讓學生透過Arduino實作出「投籃車」作品,並學習在STEM各學科上需具備的能力,使學生在多學科整合的實作課程中,透過真實情境的學習過程,將教學發揮最大的效果。研究對象為新北市某國中七年級共104名學生,共八周,採準實驗研究法,自變項為教學方法,依照教學方法在實驗組(差異化專題導向於STEM實作課程)、對照組(專題導向學習於STEM實作課程)於STEM實作課程之影響;依變項為學習成效,其中包含STEM知識、執行功能、自我效能與實作能力,並分析對不同學習成就學生之影響。
本研究結果顯示,兩種教學方法對一般成就生及低成就生之STEM知識皆有效提升並有顯著影響,低成就學生於實驗組進步幅度更較對照組低成就學生大;兩組教學模式對於執行功能及自我效能皆無顯著影響;在實作能力表現上實驗組在實驗處理後較對照組佳,並達顯著差異。
研究結果發現一般成就學生、低成就學生在STEM的整合知識中有大幅的進步,並且縮小與一般成就學生的學習落差,在自我效能、執行功能上可能因實驗時間太短而無顯著提升,建議未來研究可以加長實驗時間,並在課程實施中將學生根據教材設計於學生能力上進行分層。
In recent years, STEM is the key to cultivate cross-technology talents, which could motivate students to develop in multi-field by means of interdisciplinary integration. During apply the learned knowledge process of STEM teaching course, students understand how to implement. Project-Based Learning emphasize that students should study in context to solve problem. Differentiated Instruction carrying on the purpose of teaching students according to their aptitud, which offer equal learning opportunities to students and minimize the drop of low achievement students.
This study discussed the influence on the learning effect of Differentiated Instruction Project-Based Learning (STEM knowledge, executive function, self-efficiency and hands-on ability) in STEM teaching activities. During the teaching process, students are required to make the “Catapult Car” with Arduino, and understand the abilities needed in different subjects on STEM, as a result, in the process of multidisciplinary integrated teaching courses and context learning, students will make best use of the teaching courses. 104 students are selected as participant from a secondary school in New Taipei City. The quasi-experimental design are adopted in the study. The whole project takes 8 weeks, the independent variables are teaching method, proceed by the effect of different teaching methods to STEM teaching courses used in experimental group (Differentiated Project-Based Learning in STEM teaching activity), control group (Project-Baesd Learning in STEM teaching activity); dependent variables are the learning performances, which includes STEM knowledge, executive function, self-effectiveness and hands-on ability. The influence of the teaching method applied to general and low achievement students are also analized.
The result of the study indicates that the these two teaching methods shows prominent effect to promote general and low achievement students’ knowledge of STEM, while low achievement students of experimental group improves much more compared with low achievement students of control group; the teaching modes for these 2 groups leaves non-significant effect on executive function, nor the self-effectiveness. As for the hands-on abilities, the experimental group perform better than the control group after experimental process, and achieved significant differences.
The study found that general and low achievement students have made great progress in the integration of STEM knowledge, and narrowed the learning gap between students with general achievement. In terms of self-efficacy and executive function, the experimental time may be too short without significant improvement. It is recommend that future research can lengthen the experiment time, and in the course implementation, students will be differentiated according to the Differentiated Instruction.
參考文獻
一、中文部分
王宣惠、洪儷瑜、陳秀芬(2013)。國中低成就學生課堂行為表現與學習成效之研究。執行成果暨補救教學學術研討會,臺北市。
王鼎銘(1999)。科技發展與科技教育學習經驗。生活科技教育,32(11),2-9。
丘愛鈴(2013)成就每一個學生:差異化教學之理念與教學策略。 教育研究月刊,231,18-33。
田曉芬(2018)。應用差異化教學於八年級數學之行動研究(碩士論文)。靜宜大學,臺中市。
白惠芳、林梅琴、陳慧娟、張文哲(2011)。教育心理學-學習者的發展與成長。臺北市:洪葉文化。
任宗浩、陳冠銘(2017)。TIMSS 2015國家報告。臺北市:國立臺灣師範大學。
朱珮禎、曾淑惠(2018)。創客(Maker)教育實踐於十二年國教課程之評析。臺灣教育評論月刊, 7(3),160-163。
朱慶琳、黃敏怡、葉啟斌、姜忠信(2018)。學齡期注意力不足過動症-混合表現型兒童執行功能研究。特殊教育研究學刊,43(1),53-78。
余民寧 (2006 )。影響學習成就因素的探討。教育資料與研究雙月刊,73,11-24。
吳昌儒(2013)。專題導向式學習於智慧教室之研究(未出版碩士論文)。國立臺灣師範大學,臺北市。
吳清山(2005)。知識管理活化教育發展動能:評介E.Sallis和G.Jones《教育知識管理》。當代教育研究,13(2),229-237。
吳清山(2012)。為建構教育幸福而努力。國家教育研究院電子報。取自http://epaper.naer.edu.tw/index.php?edm_no=34 & content_no=900.
吳清山、林天祐(2009)。教育名詞︰特色學校。教育資料與研究,88,145-146。
吳裕益(1980)。國中高、低成就學生家庭背景及心理特質之比較研究。教育學刊,9(2),211-248。
李宏鍇(2004)。大腦的執行功能。特殊教育季刊,90,1-7。
李咏吟(1997)。學習輔導—學習心理學的應用。臺北市:心理。
周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育,41(7),51-83。
周黃麗梅(2006)。探究低成就學童之遊戲治療歷程與自我效能之變化(未出版碩士論文)。國立新竹教育大學,新竹市。
林佩璇,高翠鴻,許燕萍(2016)差異化教學的矛盾與轉化:活動理論觀。中等教育,67(4),7-20。
林怡伶(2015)。想培養出未來的人才,不能不認識PBL學習法。遠見天下文化出版股份有限公司數位專欄。取自https://gfamily.cwgv.com.tw/content/index/1973
林芳如(2012)。淺談執行功能及其在特殊教育上的應用。國小特殊教,54,23-32。
林建平(2010)。低成就學童的家庭環境與自我調整學習之研究。新竹教育大學教育學報,27(1),93-124。
林思吟(2016)。淺談差異化教學。臺灣教育評論月刊,5(3),118-123。
林梅琴、黃佩娟(2000)。專科學生學習低成就的成因及學習困境之研究—以德明商專為例。德明學報,16,373-396。
林朝順、鄒國英、李錦虹、卓淑玲(2013)。在PBL的困難情境中學生對老師介入的期望。輔仁醫學期刊,11(3),181-186。
林蕙涓(2017)。專書導讀:《能力混合班級的差異化教學》。教育脈動,12,1-4。
邱上真、洪碧霞(1997)。國語文低成就學生閱讀表現之追蹤研究(II):國民小學國語文低成就學生篩選工具系列發展之研究(II)。行政院國家科會委員會專題研究成果報告(編號:NSC 86-2413-H-017-002-F5)。
姚經政、林呈彥(2016)。 STEM 教育應用於機器人教學—以 6E 教學模式結合差異化教學。科技與人力教育季刊,3(1),53-75。
計儒皓(1987)。學業低成就學生之認識與輔導。輔導通訊,3,120-121。
孫允梅(2015)。差異化教學應用於補救教學之行動研究(未出版之未出版碩士論文)。國立臺北教育大學,台北市。
張玉山(2011)。以智能因素探討網路同步 TRIZ 設計教學策略對大學生科技創造力影響之研究。行政院國家科學委員會研究報告。
張雨勝(2016)。專題導向的STEM課程對高一學生問題解決能力影響之行動研究(未出版之碩士論文)。國立彰化師範大學,彰化市。
張春興(2007)。教育心理學:三化取向的理論與實踐。臺北市:東華。
張錫勳(2016)差異化教學的桃花源:國中課堂學習共同體的差異化教學設計與實踐。中等教育,67(4),85-111。
張瀞文(2016)。親子天下縣市教育力調查:窮縣逆襲,名次大洗牌。親子天下,82,122-129。
教育部(2011)。攜手計畫標準作業流程手冊。臺北市: 教育部。
教育部(2016)。教育部國民及學前教育署補助辦理補救教學作業要點修正規定。行政院公報資訊網。
教育部國教署(2015)。持續協助看見孩子的進步。教育部全球資訊網。
梁茂森(1998)。國中生學習自我效能量表之編製。教育學刊,14,155-192。
莊惠如、王菀詩、吳怡慧(2014)。同異質分組並行差異化教學。中等教育,65(3), 117-131。
郭姿蘭(2006)。內外控人格特質,自我效能,核心能力與學習成效之關聯性研究─以我國大專院校會計系學生為例(未出版碩士論文)。淡江大學,新北市。
郭添財(2014)。台灣高等教育問題與改善策略。教育學術彙刊,6,61-72。
陳永富(2018)。差異化教學融入行動學習教學模式之行動研究-以臺中市某高職數學一年級為例(未出版之碩士論文)。中興大學,台中市。
陳立庭(2017)3D 繪圖軟體 SketchUp 融入生活科技展開圖學習活動之行動研究。科技與人力教育季刊,3(4),14-25。
陳東陞(1992)。低成就學生的診斷與輔導。臺灣省國校教師研習會:研習資訊,9(3),17-21。
陳冠瑞(2017)。以個別差異化看補救教學之學習難度。臺灣教育評論月刊,6(6),159-162。
陳國泰(2016)。結合專題導向學習的翻轉教學之設計:以國小數學教學為例。教育研究月刊,261(2),18-31。
曾千瑜(2001)。個案研究—一位低成就的孩子。取自http://www.nhlue.edu.tw/~su/eda/e-27.doc。
曾柏瑜(2008)。低成就學童的有效補救教學原則。台東特教,27。
曾葉強(2014)。專題研究課程對學習成效之影響-以Arduino為例(未出版之碩士論文)。國立宜蘭大學,宜蘭市。
黃子榕、林坤誼(2014)。職前教師於STEM實作課程的知識整合行為研究。科技與人力教育季刊,1(1),18-39。
楊宗仁(2002)。自閉症青少年之 [執行功能] 研究:認知彈性。特殊教育研究學刊,22,49-73。
葉錫南(2013)。英文科差異化教學之理念與實施。教育研究月刊,233,37-48。
詹秀雯、張芳全(2014)。影響國中生學習成就因素之研究。臺中教育大學學報:教育類,28(1),49-76。
臺灣PISA國家研究中心(2014)。臺灣 PISA2012 精簡報告。取自 http://pisa. nutn. edu. tw/download_tw. htm.。
潘樂英(2005)。學生的自我效能感對學習的影響及其培養。邢台學院學報,20(3),107-109。
蔡辰北、陳靜紋(2013)。淺談差異化教學。臺灣教育評論月刊,2(11),78-80。
盧富美(1976)。國民小學低成就兒童家庭背景之分析研究。台中市: 台灣省政府教育廳。
蕭顯勝、林建佑、陳俊臣、林奕維、陳政翰(2018)。STEM學習態度量表建構效度驗證之研究。2018 3rd PIL International Conference on Education and Management Innovation(PIL-EMI 2018)發表之論文,香港。
薛雅純(2019)。以均一教育平台實施差異化教學之實務見解。臺灣教育評論月刊,8(1),245-248。
謝念慈(2016)。十二年國民基本教育中學師資培育的有效教學: 差異化的觀點。課程研究,11(2),19-45。
羅希哲、陳柏豪、石儒居、蔡華齡、蔡慧音(2009)。STEM整合式教學法在國民中學自然與生活技術領域之研究。人文社會科學研究,3(3),42-66。
蘇祐立(2017)。程式教育納入107年課綱,臺灣的老師準備好了嗎?Seeed Studio蘇祐立解析歐美教育與亞洲的不同。取自https://www.techbang.com/posts/48557-seeed-pass-silicon。
二、英文部分
A.G.M. de Bruijn, E. Hartman, D. Kostons, C. Visscher, R.J. Bosker. (2018). Exploring the relations among physical fitness, executive functioning, and low academic achievement. Journal of Experimental Child Psychology, 167, 204-221.
Abraham, R. R., Fisher, M., Kamath, A., Izzati, T. A., Nabila, S., & Atikah, N. N. (2011). Exploring first-year undergraduate medical students' self-directed learning readiness to physiology. Advances in Physiology Education, 35(4), 393-395.
Aliakbari, M., & Haghighi, J. K. (2014). On the effectiveness of differentiated instruction in the enhancement of Iranian learners reading comprehension in separate gender education. Procedia-Social and Behavioral Sciences, 98, 182-189.
Alvarez, C. A., Edwards, D., & Harris, B.(2010). STEM Specialty Programs: A Pathway for under-Represented Students into STEM Fields. NCSSSMST Journal, 16(1), 27-29.
Al-Zoubi, S. M., & Younes, M. A. B. (2015). Low academic achievement: causes and results. Theory and Practice in Language Studies, 5(11), 2262-2268.
Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child neuropsychology, 8(2), 71-82.
Arends, R., & Kilcher, A. (2010). Teaching for student learning: Becoming an accomplished teacher. New York: Routledge.
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191-215.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, N.J: Prentice-Hall.
Baran, M., & Maskan, A. (2010). The effect of project-based learning on pre-service physics teachers electrostatic achievements. Cypriot Journal of Educational Sciences, 5(4), 243-257.
Barrows, H. S., & Tamblyn, R. M. (1980). Project-based learning: An approach to medical education. Springer Publishing Company.
Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A preliminary meta-analysis. Journal of STEM Education, 12, 23-36.
Berliner, D. C. (2009). Poverty and potential: Out-of-school factors and school success. East Lansing, MI: The Great Lakes Center for Education Research and Practice.Retrieved from http://nepc.colorado.edu/files/PB-Berliner-NON-SCHOOL.pdf.
Berry III, R. Q., Reed, P. A., Ritz, J. M., & Lin, C. Y. (2004). STEM initiatives: Stimulating students to improve science and mathematics achievement. Technology and Engineering Teacher, 64(4), 23-30.
Besemer, S. P., & O’ Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an american sample. Creativity Research Journal, 12, 287-296.
Bierman, K. L., Nix, R. L., Greenberg, M. T., Blair, C., & Domitrovich, C. E. (2008). Executive functions and school readiness intervention: Impact, moderation, and mediation in the Head Start REDI program. Development and Psychopathology, 20(3), 821-843.
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child development, 78(2), 647-663.
Boelens, R., Voet, M., & De Wever, B. (2018). The design of blended learning in response to student diversity in higher education: Instructors’ views and use of differentiated instruction in blended learning. Computers & Education, 120, 197-212.
Bottia, M. C., Stearns, E., Mickelson, R. A., Moller, S., & Parker, A. D. (2015). The relationships among high school STEM learning experiences and students' intent to declare and declaration of a STEM major in college. Teachers College Record, 117(3), 1-46.
Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70, 30-35.
Capraro, R. M. & Slough, S. W. (2008). Why PBL? Why STEM? Why now? An introduction to project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. In R. M. Capraro & S. W. Slough (Eds.), Project based learning: An integrated science technology engineering and mathematics (STEM) approach (pp. 1–6).
Castellanos, I., Kronenberger, W. G., & Pisoni, D. B. (2018). Questionnaire-based assessment of executive functioning: Psychometrics. Applied Neuropsychology: Child, 7(2), 93-109.
Chien, C. W. (2013). Using Raphael’s QARs as differentiated instruction on picture books among young learners of English as a foreign language. English Teaching Forum, 51(3), 20-27.
Cirino, P. T., Miciak, J., Gerst, E., Barnes, M. A., Vaughn, S., Child, A., & Huston-Warren, E. (2017). Executive function, self-regulated learning, and reading comprehension: A training Study. Journal of learning disabilities, 50(4), 450-467.
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press.
Crone, E. A. (2009). Executive functions in adolescence: inferences from brain and behavior. Developmental Science, 12(6), 825-830.
Davis, G. A., & Rimm, S. B. (1989). Education of the gifted and talented. NJ, US: Prentice Hall.
Dawson, P., & Guare, R. (2012). Coaching students with executive skills deficits. New York: Guilford Press.
Dayton Regional STEM Center. (2011). STEM education quality framework. Retrieved From http://daytonregionalstemcenter.org/wp-content/uploads/2012/07/Final-Framework-copyrighted. pdf
Dewey, J. (1925). My pedagogic creed. Journal of Education, 101(18), 490-490.
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
Domínguez, C. & Jaime, A. (2010). Database design learning: A project-based approach organized through a course management system. Computers & Education, 55(3), 1312– 1320.
Ejiwale, J. A. (2012). Facilitating teaching and learning across STEM fields. Journal of STEM Education: Innovations and Research, 13(3), 87-94.
Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177-194.
Gioia, Gerard. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Test review behavior rating inventory of executive function. Child Neuropsychology, 6(3), 235-238.
Gordon, A. M., & Browne, K. W. (2017). Beginnings & Beyond: Foundations in Early Childhood Education. 10th edition. Boston, MA.
Hampton, N. Z., & Mason, E. (2003). Learning disabilities, gender, sources of efficacy, self-efficacy beliefs, and academic achievement in high school students. Journal of School Psychology, 41(2), 101-112.
Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13(5), 1089-1113.
Hsiao, H. S., Chen, J. C., Lin, C. Y., Zhuo, P. W., & Lin, K. Y. (2019). Using 3D printing technology with experiential learning strategies to improve preengineering students' comprehension of abstract scientific concepts and hands-on ability. Journal of Computer Assisted Learning, 35(2), 178-187. https://doi.org/10.1111/jcal.12319.
Johnson, D. W., Johnson, R. T. & Holubec, E. (1998). Cooperation in the classroom (6th ed.). Edina: Interaction Book Company.
Jose, S., Patrick, P. G., & Moseley, C. (2017). Experiential learning theory: The importance of outdoor classrooms in environmental education. International Journal of Science Education, Part B, 7(3), 269–284.
Kaldi, S., Filippatou, D. & Govaris, C. (2011). Project-based learning in primary schools: Effects on pupils’ learning and attitudes. Education 3–13, 39(1), 35–47.
Kelley, T. R.(2010). Staking the claim for the‘T’in STEM. The Journal of Technology Studies, 36(1), 2-11.
Lantz, H. B. (2009). Science, technology, engineering, and mathematics (STEM) education: What form? What function?, from http://www.currtechintegrations.com/pdf/STEMEducationArticle.pdf.
Lent, R. W., Brown, S. D., & Larkin, K. C. (1984). Relation of self-efficacy expectations to academic achievement and persistence. Journal of counseling psychology, 31(3), 356.
Lezak, M. D., & Lezak, M. D. (2004). Neuropsychological assessment. Oxford: Oxford University Press.
Lin, K. Y., Hsiao, H. S., Williams, P. J., & Chen, Y. H. (2019). Effects of 6E-oriented STEM practical activities in cultivating middle school students’ attitudes toward technology and technological inquiry ability. Research in Science & Technological Education, 1-18.
Lou, S. J., Shih, R. C., Diez, C. R., & Tseng, K. H.(2011). The impact of Project-based learning strategies on STEM knowledge integration and attitudes: an exploratory study among female Taiwanese senior high school students. International Journal of Technology and Design Education, 21(2), 195-215.
Lu, Y. L., Lian, I. B., & Lien, C. J. (2015). The application of the analytic hierarchy process for evaluating creative products in science class and its modification for educational evaluation. International Journal of Science & Mathematics Education, 13(2), 413-435.
M., Dochy, F., & Segers, M. (2011). Factors affecting students’ self-efficacy in higher education. Educational Research Review, 6(2), 95-108.
Martin-Kniep, G. O., Muxworthy Feige, D., & Soodak, L. C. (1995). Curriculum integration: An expanded view of an abused idea. Journal of Curriculum and Supervision, 10, 227-227.
Mastropieri, M. A., & Scruggs, T. E. (2014). Intensive instruction to improve writing for students with emotional and behavioral disorders. Behavioral Disorders, 40(1), 78-83.
Meltzer, L. (2010). What works for special-needs learners. Promoting executive function in the classroom. New York, NY, US: Guilford Press.
Miller, A. (2016). 6 Strategies for Differentiated Instruction in Project-Based Learning. Edutopia. Posted online, 24, 02-16.
Murphy, P. K., Greene, J. A., Firetto, C. M., Li, M., Lobczowski, N. G., Duke, R. F., & Croninger, R. M. (2017). Exploring the influence of homogeneous versus heterogeneous grouping on students’ text-based discussions and comprehension. Contemporary Educational Psychology, 51, 336-355.
North Carolina Department of Public Instruction. (2013). STEM attribute implementation rubric: High school.
Paolini, A. (2015). Enhancing Teaching Effectiveness and Student Learning Outcomes. Journal of effective teaching, 15(1), 20-33.
Park, V., & Datnow, A. (2017). Ability grouping and differentiated instruction in an era of data-driven decision making. American Journal of Education, 123(2), 281-306.
Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. Prentice Hall.
Preckel, F., Holling, H., & Vock, M. (2006). Academic underachievement: Relationship with cognitive motivation, achievement motivation, and conscientiousness. Psychology in the Schools, 43(3), 401-411.
Prior, M. R., & Hoffmann, W. (1990).Neuropsychological testing of autistic children through an exploration with frontal lobe tests. Journal of Autism and Developmental Disorders, 20, 581-590.
Rees, P., Olson, C., Schweik, C. M., & Brewer, S. D. (2015, June). Work in progress: Exploring the role of makerspaces and flipped learning in a Town-Gown effort to engage K12 students in STEAM. 2015 ASEE Annual Conference & Exposition (pp. 26-1751).
Savery, J. R. (2006). Overview of problem-based learning: definition and distinctions, the interdisciplinary. Journal of Problem-based learning. 1(1). 9-20.
Scheerer, M., Rothmann, E., & Goldstein, K.(1945). A case of “idiot savant”: An experimental study of personality organization. Psychological Monographs, 58, 1-63.
Sergeant, J. A., Geurts, H., & Oosterlaan, J. (2002). How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder?. Behavioural brain research, 130(1-2), 3-28.
Servilio, K. L. (2009). You get to choose! Motivating students to read through differentiated instruction. Exceptional Children Plus, 5(5), 2-11.
Shallice, T. (1988). From neuropsychology to mental structure. Cambridge University Press.
Shanshan, L., Xiaojun, W., & Chengbin, Q. (2017). Training students' practical and innovation ability in hardware experiment. In 2017 IEEE Frontiers in Education Conference (FIE) , 1-5.
Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 4-13.
Skinner, B. F. (1965). Science and human behavior. Oxford, England: Macmillan.
Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering and technology: A meta-analysis. Review of Educational Research, 69(1), 21–51.
Stanford, B., & Reeves, S. (2009). Making it happen: Using differentiated instruction, retrofit framework, and universal design for learning. Teaching Exceptional Children Plus, 5(6), 2-9.
Strangman, N., Vue, G., Hall, T., & Meyer A. (2004). Graphic Organizers and Implications for Universal Design for Learning: Curriculum Enhancement Report. Wakefield, MA: National Center on Accessing the General Curriculum. (Links updated 2014). Retrieved [insert date] from http://aem.cast.org/about/publications/2003/ncac-graphic-organizers-udl.html
Tomlinson, C. A. (1999). Mapping a route toward a differentiated instruction. Educational Leadership, 57(1), 12.
Tomlinson, C. A. (2001). How to differentiate instruction in mixed-ability classrooms. Alexandria, Va: Association for Supervision and Curriculum Development.
Tomlinson, C. A., Brighton, C., Hertberg, H., Callahan, C. M., Moon, T. R., Brimijoin, K., & Reynolds, T. (2003). Differentiating instruction in response to student readiness, interest, and learning profile in academically diverse classrooms: A review of literature. Journal for the Education of the Gifted, 27(2-3), 119-145.
Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PBL) environment. International Journal of Technology and Design Education, 23(1), 87-102.
Watson, A. D., & Watson, G. H. (2013). Transitioning STEM to STEAM: Reformation of engineering education. The Journal For Qualıty & Participation, 36(3), 1–4.
Wenger, E. (2009). A social theory of learning. In K. Illeris (Ed.), Contemporary theories of learning: Learning theorists in their own words (pp. 209–218). New York: Routledge.
Yildiz, F., & Coogler, K. L., & Pecen, R. R. (2012). An Overview: Applied Interdisciplinary Renewable Energy Projects Paper presented. 2012 ASEE Annual Conference & Exposition. San Antonio, Texas. https://peer.asee.org/20939.
Zhu, Y. (2018). Equity in Mathematics Education: What Did TIMSS and PISA Tell Us in the Last Two Decades?. In Invited Lectures from the 13th International Congress on Mathematical Education (pp. 769-786). Springer, Cham.
Zimmerman, B. J., Bonner, S., & Kovach, R. (1996). Psychology in the classroom: A series on applied educational psychology. Developing self-regulated learners: Beyond achievement to self-efficacy. Washington, DC, US: American Psychological Association.