簡易檢索 / 詳目顯示

研究生: 林育輝
Lin, Yu-Hui
論文名稱: 蕨類氣孔對環境二氧化碳濃度變化之敏感性
The Sensitivity of Fern Stomata to Changes of Ambient Carbon Dioxide Concentration
指導教授: 林登秋
Lin, Teng-Chiu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 50
中文關鍵詞: 氣孔導度氣孔反應ci/ca值水分利用效率氣孔演化維管束植物
英文關鍵詞: stomatal conductance, stomatal response, ci/ca ratio, water-use efficiency, stomatal evolution, vascular plant
DOI URL: http://doi.org/10.6345/NTNU201900797
論文種類: 學術論文
相關次數: 點閱:141下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物的氣孔 (stomata) 在光合作用及蒸散作用中扮演重要的角色,不僅影響植物生長與適應環境,更與大氣中的碳循環和水循環息息相關。一般認為當環境條件改變時,氣孔會有所反應而改變其孔徑大小。然而,過去對於氣孔的研究較少著重於蕨類植物等較古老的植物類群,因此其氣孔對於環境變化之敏感性仍未有所定論。近年來的研究對蕨類氣孔在環境二氧化碳濃度改變之下的反應情形充滿爭議。為了解蕨類植物的氣孔對於環境二氧化碳濃度變化之敏感性以及其對植物的影響,本研究測量9種蕨類植物、1種石松植物以及2種被子植物的葉片在合適的溫度、濕度及光線下改變環境二氧化碳濃度後的氣孔導度 (stomatal conductance) 變化率、達到氣孔導度變化率之一半時的所需時間、細胞間隙與不同環境二氧化碳濃度的比值 (ci/ca ratio) 以及在高環境二氧化碳濃度下的水分利用效率。結果顯示當環境二氧化碳濃度降低後,各研究物種的氣孔導度皆會明顯地提高,氣孔開啟的速度接近;當環境二氧化碳濃度升高時,氣孔導度都會明顯地降低,水分利用效率也因而顯著提升,大多數物種間的氣孔閉合速度並無明顯差異。不同環境二氧化碳濃度下的ci/ca值無明顯差異。氣孔感應環境二氧化碳濃度變化而改變其孔徑大小的敏感性機制存在於蕨類植物、石松植物及被子植物中,但反應程度可能受到其他因素而有所不同。本研究結果有助釐清蕨類氣孔受到環境二氧化碳濃度變化的敏感性,幫助了解氣孔功能的演化以及其對植物適應環境的影響。

    The stomata of plants play an essential role in photosynthesis and evapotranspiration, affecting not only the growth and adaptation of plants, but also the carbon cycle and water cycle. It is generally believed that when environmental conditions change, the stomata will response and alter their pore sizes. However, relatively few studies of stomata have focused less on more ancient groups of plants such as ferns, so the sensitivity of their stomata to environmental changes remains unclear. Recently, the response of fern stomata to changes of ambient CO2 concentration, is controversial. In order to investigate the sensitivity of fern stomata to changes of ambient CO2 concentration and its effects on the plants, the change rate of stomatal conductance of 9 species of ferns, 1 lycophytes, and 2 angiosperms after changing the ambient CO2 concentration were measured under appropriate temperature, humidity and light. The half-time of each step was also recorded. In addition, the ratio of intercellular to ambient CO2 concentration, ci/ca ratio, over each step and water-use efficiency under high ambient CO2 concentration were calculated. The results showed that when the concentration of ambient CO2 reduced, the stomatal conductance of all species significantly elevated, and the half-time of stomatal openness was similar among species; when the concentration of ambient CO2 increased, the stomatal conductance of all species significantly dropped, which enhanced the water-use efficiency. The response half-time of the stomatal closure was not different among most species. The ci/ca ratio among each ambient CO2 was not significantly different. The mechanism that stomata can sense the change of ambient CO¬2 concentration and adjust their pore size exists in ferns, lycophytes, and angiosperms, the but the degree of response may be different due to other factors. The results of this research may help to clarify the sensitivity of fern stomata to the change of ambient CO¬2 concentration, which can help to understand the evolution of stomatal function and its impact on plant adaptation to the environment.

    摘要 I Abstract III 第一章、前言 1 第一節、氣孔的功能及對環境變化之反應 1 第二節、蕨類植物的氣孔對環境二氧化碳濃度變化之反應 3 第三節、研究動機 6 第四節、研究問題 7 第二章、材料及方法 8 第一節、研究地點與研究物種 8 第二節、光飽和點測量 11 第三節、氣體交換測量 11 第四節、統計分析方法 16 第三章、結果 17 第一節、不同環境二氧化碳濃度下的氣孔導度變化率 17 第二節、達氣孔導度改變率之一半時的所需時間 19 第三節、不同環境二氧化碳濃度下的ci/ca值 20 第四節、高環境二氧化碳濃度下的水分利用效率 20 第四章、討論 35 第五章、結論 43 第六章、參考文獻 44

    Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO¬2]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270.
    Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research (pp. 221-224).Springer,Dordrecht.
    Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., & White, J. W. C. (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature, 488(7409), 70-72.
    Berner, R. A. (1993). Paleozoic atmospheric CO2: importance of solar radiation and plant evolution. Science, 261(5117), 68-70.
    Berry, J., & Björkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31(1), 491-543.
    Berry, J. A., Beerling, D. J., & Franks, P. J. (2010). Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology, 13(3), 232-239.
    Brodribb, T. J., McAdam, S. A., Jordan, G. J., & Feild, T. S. (2009). Evolution of stomatal responsiveness to CO2 and optimization of water‐use efficiency among land plants. New Phytologist, 183(3), 839-847.
    Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275-292.
    Buckley, T. N., & Mott, K. A. (2013). Modelling stomatal conductance in response to environmental factors. Plant, Cell & Environment, 36(9), 1691-1699.
    Christenhusz, M. J., & Chase, M. W. (2014). Trends and concepts in fern classification. Annals of Botany, 113(4), 571-594.
    Ciais, P., Denning, A. S., Tans, P. P., Berry, J. A., Randall, D. A., Collatz, G. J., ... & Heimann, M. (1997). A three‐dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. Journal of Geophysical Research: Atmospheres, 102(D5), 5857-5872.
    Chaloner, W. G. (1970). The rise of the first land plants. Biological Reviews, 45(3), 353-377.
    Cowan, I. R. (1978). Stomatal behaviour and environment. In Advances in Botanical Research (Vol. 4, pp. 117-228). Academic Press.
    Creese, C., Oberbauer, S., Rundel, P., & Sack, L. (2014). Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances. New Phytologist, 204(1), 92-104.
    Darwin, F. (1898). IX. Observations on stomata. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, (190), 531-621.
    Doi, M., & Shimazaki, K. I. (2008). The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiology, 147(2), 922-930.
    Doi, M., Kitagawa, Y., & Shimazaki, K. I. (2015).
    Stomatal blue light response is present in early vascular plants. Plant Physiology, 169(2), 1205-1213.
    Drake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64(2), 495-505.
    Ehleringer, J. R., & Cerling, T. E. (1995). Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiology, 15(2), 105-111.
    Farquhar, G. D., & Sharkey, T. D. (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33(1), 317-345.
    Frechilla, S., Talbott, L. D., & Zeiger, E. (2002). The CO2 response of Vicia guard cells acclimates to growth environment. Journal of Experimental Botany, 53(368), 545-550.
    Foyer, C. H., Lelandais, M., & Kunert, K. J. (1994). Photooxidative stress in plants. Physiologia Plantarum, 92(4), 696-717.
    Franks, P. J., & Farquhar, G. D. (2007). The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology, 143(1), 78-87.
    Franks, P. J., & Britton‐Harper, Z. J. (2016). No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?. New Phytologist, 211(3), 819-827.
    Hall, A. E., & Kaufmann, M. R. (1975). Stomatal Response to Environment with Sesamum indicum L.. Plant Physiology, 55(3), 455-459.
    Hõrak, H., Kollist, H., & Merilo, E. (2017). Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiology, 174(2), 672-679.
    Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J.,Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological Applications, 11(4), 1027-1045.
    Jackson, W. A., & Volk, R. J. (1970). Photorespiration. Annual Review of Plant Physiology, 21(1), 385-432.
    Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., & Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324.
    Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389(6646), 33-39.
    Lammertsma, E. I., de Boer, H. J., Dekker, S. C., Dilcher, D. L., Lotter, A. F., & Wagner-Cremer, F. (2011). Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proceedings of the National Academy of Sciences, 108(10), 4035-4040.
    Lawson, T., Simkin, A. J., Kelly, G., & Granot, D. (2014). Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytologist, 203(4), 1064-1081.
    Lin, Y. S., Medlyn, B. E., Duursma, R. A., Prentice, I. C., Wang, H., Baig, S., ... & Wingate, L. (2015). Optimal stomatal behaviour around the world. Nature Climate Change, 5(5), 459.
    Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45(1), 633-662.
    Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124), 1198-1201.
    Morison, J. I., & Gifford, R. M. (1983). Stomatal sensitivity to carbon dioxide and humidity: a comparison of two C3 and two C4 grass species. Plant Physiology, 71(4), 789-796.
    Morison, J. I., & Gifford, R. M. (1984). Plant growth and water use with limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Functional Plant Biology, 11(5), 375-384.
    Morison, J. I. (1985). Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell & Environment, 8(6), 467-474.
    Morison, J. I. (1998). Stomatal response to increased CO2
    concentration. Journal of Experimental Botany, 443-452.
    Mott, K. A. (1988). Do stomata respond to CO2 concentrations other than intercellular?. Plant Physiology, 86(1), 200-203.
    Ogawa, T. (1981). Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light. Plant Science Letters, 22(2), 103-108.
    Pryer, K. M., Schuettpelz, E., Wolf, P. G., Schneider, H., Smith, A. R., & Cranfill, R. (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American
    Journal of Botany, 91(10), 1582-1598.
    Roberntz, P., & Stockfors, J. A. N. (1998). Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees. Tree Physiology, 18(4), 233-241.
    Ruszala, E. M., Beerling, D. J., Franks, P. J., Chater, C., Casson, S. A., Gray, J. E., & Hetherington, A. M. (2011). Land plants acquired active stomatal control early in their evolutionary history. Current Biology, 21(12), 1030-1035.
    Sage, R. F. (1994). Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynthesis Research, 39(3), 351-368.
    Schulze, E. D., Robichaux, R. H., Grace, J., Rundel, P. W., & Ehleringer, J. R. (1987). Plant water balance. BioScience, 37(1), 30-37. Sharkey, T. D., & Raschke, K. (1981). Separation and measurement of direct and indirect effects of light on stomata. Plant Physiology, 68(1), 33-40.
    Shimazaki, K. I., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219-247.
    Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55(3), 705-731.
    Talbott, L. D., Rahveh, E., & Zeiger, E. (2003). Relative humidity is a key factor in the acclimation of the stomatal response to CO2. Journal of Experimental Botany, 54(390), 2141-2147. Vavasseur, A., & Raghavendra, A. S. (2005). Guard cell metabolism and CO2 sensing. New Phytologist, 165(3), 665-682.
    Willmer, C., & Fricker, M. (1996). Stomata (Vol. 2). Springer Science & Business Media.
    Xu, Z., & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59(12), 3317-3325.
    Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657.

    下載圖示
    QR CODE