研究生: |
王乙婷 I-Ting Wang |
---|---|
論文名稱: |
1.氧+乙烷及氧+氨之反應動力學ab initio/RRKM計算 2.金剛烷面選擇性之計算研究 1.The ab initio/RRKM calculations of O + C2H6 and O+ NH3 reactions2.A computational study of face selectivity of a reaction for adamantane derivatives |
指導教授: |
孫英傑
Sun, Ying-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 反應 、動力學 、氧 、氨 |
英文關鍵詞: | reaction, kinetic, oxygen, ammonia |
論文種類: | 學術論文 |
相關次數: | 點閱:344 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用ab initio/RRKM之計算方法研究O(1D)與乙烷及氨在交叉分子束無碰撞環境下的反應,研究其可能發生的反應機制及路徑,產生各種產物,進而計算並得出各種產物之產率。我們利用反應經由插入之反應機制來計算各種產物生成之相關產率,在O(1D)+C2H6反應中,經由理論計算出H、H2、OH、CH3及H2O之產率分別為4.4、0.8、7.9、60.1及26.8 %,而在O(1D)+NH3反應中,H、OH、H2O及H2之產率則分別為6.7、86.8、6.4及0.1 %,而O(1D)+C2H6反應之H、H2、OH及CH3之產率計算結果與實驗值3、2、25及70 %有很好的一致性,然而在O(1D)+NH3反應方面,H及OH之產率亦與實驗值10及90 %相符。除此之外,實驗中兩個反應皆無觀察到水分子的存在,此乃因水分子在實驗中不易偵測,且在OH自由基方面之理論計算結果較實驗值小。由計算結果得到在O(1D)+C2H6反應中,水分子之產率佔有26.8 %,顯示出水分子在此反應中是一個很重要的次產物,而在O(1D)+NH3反應中,水分子所佔的百分比僅6.4 %。因為水分子之產生主要來自於OH自由基與一個beta氫原子結合而來,由此建議當O插入小烷類衍生物形成醇類並擁有beta氫原子時,水分子是不可忽視的產物。除此之外,理論計算之OH自由基產率與實驗值比較的結果,會發現值稍小些,其可能的原因是在計算產率時我們只考慮插入之反應機制,此結果建議經由拔取反應所產生之OH自由基亦是不可忽視的,除此之外,經由其它反應路徑產生各種不同產物之速率常數探討,我們將於討論部份詳述之。
除了上述研究外,我們亦利用半經驗及ab initio的量子力學理論計算方法研究4,9-substituted-2-dicyanomethyleneadamantanes及還原劑LiAlH4反應之p面選擇性,所探討的取代基包含-F、-Cl及-Br,結果顯示所有取代基化合物皆較易進行syn的反應,此外,我們利用研究反應物之雙面角性質來分析結果, 發現在此反應中,p面選擇性與反應物之雙面角有很好的定性關係,此結果顯示立體效應對於p面選擇性之syn/anti產物比例有著重要的影響。
The O(1D)+C2H6 and NH3 reactions have been studied using ab initio/RRKM calculation to investigate possible formation mechanisms of various products in molecular beam collision-free environment. The calculations of relative branching ratios for various products formed through the insertion mechanism were carried out. The calculations for the O(1D)+C2H6 reaction gave the percentages of 4.4, 0.8, 7.9, 60.1, and 26.8 for the H, H2, OH, CH3, H2O formation channels, respectively. In the O(1D)+NH3 reaction, the percentages are 6.7, 86.8, 6.4 and 0.1 for the H, OH, H2O, H2 formation channels, respectively. For the O(1D)+C2H6 reaction, the calculated results are in good agreement with available experimental results of 3, 2, 25, and 70 % for the first four species above. In O(1D)+NH3 reaction, the calculated results are also in good agreement with available experimental results of 10 and 90 % for H and OH radicals. It is noted that the calculations underestimated the branching ratio for OH formation channel and predicted a significant amount of water molecules to be formed in the O(1D)+C2H6 reaction. H2O was not observed due to its low detective in experiment. But for O(1D)+NH3 reaction, the water formation channel only take 6.4 % out total reaction channels. Because the water molecular is mainly formed by the OH and a beta H, this suggests that H2O will be an unnegligible product in the reactions of O + simple alkane derivatives which have a beta H. The lower calculated value for OH product compared with experimental result may be because that only the insertion mechanism is considered in the calculations. This underestimated result is compensated by the contribution from the abstraction channel. Reaction rates of all detail elementary reactions to produce various products described above are reported and discussed.
The p-facial selectivity of 4,9-substituted-2- dicyanomethylene- adamantanes with LiAlH4 reaction was examined using semiempirical and ab initio calculation. The substituents investigated include –F, -Cl and –Br groups. The reaction for all substitutents favor syn attack. We examined dihedral angles of the reactant to and found it correlated well with p-facial selectivity in this reactions. The present calculated results suggest that the stereo effect can affect the syn/anti product ratio significantly in the p-facial selectivity.
Aker, P. M., O’Brien, J. J. A., Sloan, J. J. J. Chem. Phys. 1986, 84, 745.
Alfassi, Z. B., and Golden, D. M., J. Phys. Chem., 1972, 76, 3314.
Arai, H., Kato, S., Koda, S. J. Phys. Chem. 1994, 98, 12.
Basco, N., Norrish, R. G. W. Can. J. Chem. 1960, 38, 1769.
Beyer, and Swinehart Commun. Assoc. Comput. Machin. 1973, 16, 372.
Branko, S. J., J. Molec. Struct. (Theochem). 1998, 427, 137.
Brasseur, D., and Soloman, S. Aeronomy of the Middle Atmosphere, 1984
Butkovskaya, N. I., Zhao, Y., and Setser, D. W. J. Phys. Chem. A. 1994, 98, 10779.
Casavexxhia, P., Buss, R. J., Sibener, S. J., Lee, Y. T. J. Chem. Phys. 1980, 73, 6351.
Chang, A. H. H., Mebel, A. M., Yang, X. M., Lin, S. H., and Lee, Y. T. J. Chem. Phys. 1998, 109, 2748.
Chang, A. H. H., Mebel, A. M., Yang, X. M., Lin, S. H., and Lee, Y. T. Chem. Phys. Lett. 1998, 287, 301.
Crosley, D. R. J. Atmos. Sci. 1995, 52, 3299.
Curtiss, L. A., Lucas, D. J., Pople, J. A. J. Chem. Phys. 1995, 102, 3292.
Davidson, J. A., Sadowski, C. M., Schiff, H. I., Streit, G. E. Howard, C. J., Jennings, D. A., and Schmeltekopf, A. L. J. Chem. Phys. 1976, 64, 57.
Davidson, J. A., Schiff, H. I., Streit, G. E., McAfee, J. R., Schmeltekopf, A. L., and Howard, C. J. J. Chem. Phys. 1977, 67, 5021.
DeMore, W. B., Raper, O. F. J. Chem. Phys. 1967, 46, 2500.
DeMore, W. B., Sander, S. P., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R. JPL Publication Pasadena CA. 1990, 1, 90-1.
Eyring, H., Lin, S. H., and Lin, S. M. Basic Chemical Kinetics. Wiley. New York. 1980.
Fletcher, I. S., and Can, D. H. J. Chem. Phys. 1976, 54, 1765.
Fossey, J., and Sorba, J., J. Molec. Struct. (Theochem) 1989, 186, 305.
Frish, M. J., Frisch, A., Foresman, J. B. Gaussian 94 User’s Reference
Frish, M. J., Frisch, A., Foresman, J. B. Gaussian 98 User’s Reference
Gilbert, T. L. Phys. Rev. B. 1975, 12, 2111.
Greenberg, R. I., Heicklen, J. Int. J. Chem. Kinet. 1972, 4, 417.
Hohenberg, P., and Kohn, W. Phys. Rev. 1964, 136, B864.
Hsu, Y. T., and Liu, K. Ibid. 1997, 107, 2351.
Hsu, C. C., Mebel, A. M., and Lin, M. C. J. Chem. Phys. 1996, 105, 2346.
Hsu, Y. T., Wang, H. H., and Liu, K. J. Chem. Phy. 1997, 107, 1664.
Hurwitz, Y., Rudich, Y., Naaman, R. Chem. Phys. Lett. 1993, 215, 674.
Holmes, J. L., Lossing, F. P., and Meyer, P. M. J. Am. Chem. Soc. 1991, 113, 9723
Jayanty, R. K. M., Simonaitis, R., Heicklen, J. Int. J. Chem. Kinet. 1976, 8, 107.
Jones, R. O., and Narson, O. G. Rev. Mod. Phys. 1989, 61, 689.
Kaiser, R. I., Mebel, A. M., Chang, A. H. H., Lin, S. H., and Lee, Y. T. J. Chem. Phys. 1999, 110, 10330.
Kaiser, R. I., Stranges, D., Lee, Y. T., and Suits, A. G. J. Chem. Phys. 1996, 105, 8721.
Kajimoto, O., Yamasaki, H., Fueno, T. Chem. Phys. Lett. 1979, 68, 127.
Kohn, W., and Sham, L. J. Phys. Rev. 1965, 140, A1133.
Levy, M. Phys. Rev. A. 1982, 26, 1200.
Lin, C. L., DeMore, W. B. J. Phys. Chem. 1973, 77, 863.
Lin, J. J., Harich, S., Lee, Y. T., and Yang, X. J. Chem. Phys. 1999, 110, 10821.
Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 1998, 109, 2975.
Lin, M. C., Hsu, C. C., Kristyan, S., and Melius, C. F., Proceedings of the JANNAF Combustion Meeting. 1996, CPIA Publication Laurel MD. 1997, 653, Vol. II, 419.
Liu, X., Lin, J. J., Harich, S. A., Schatz, G. C., and Yang, X. Science. 2000, 289, 1536.
Luntz, A. C. J. Chem. Phys. 1980, 73, 1143.
Mebel, A. M., Morokuma, K., Lin, M. C., Melius, C. F. J. Chem. Phys. 1995, 99, 1900.
Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 7414.
Mebel, A. M., Morokuma, K., Lin, M. C. J. Chem. Phys. 1995, 103, 3440.
Michaud, P., and Cvetanovic, R. J. J. Phys. Chem. 1972, 76, 1375.
Nguyen,T. L., Mebel, A. M., Lin, H. S., and Kaiser, R. I. J. Chem. Phys. 2001, 110, 10330.
Niki, H., Maker, P. D., Savage, C. M., Breitenbach, L. P. Int. J. Chem. Kinet. 1980, 12, 1001.
Ninomiya, Y., Kawasaki, M., Guschin, A., Molina, L. T., Molina, M. J., Wallington, T. J. Environ. Sci. Technol. 2000, 34, 2973.
Orlando, J. J., Tyndall, G. S., Wallington, T. J. J. Phys. Chem. 1996, 100, 7026.
Paraskevopoulos, G., and Cvetanovic, R. J. J. Chem. Phys. 1969, 50, 590.
Paraskevopoulos, G., Cvetanovic, R. J. J. Chem. Phys. 1970, 52, 5821.
Park, C. R., Wiesenfeld, J. R. J. Chem. Phys. 1991, 95, 8166.
Rudich, Y., Hurwitz, Y., Frost, G. J., Vaida, V., and Naaman, R. J. Chem. Phys. 1993, 99, 4500.
Satyapal, S., Park, J., Bersohn, R., Katz, B. J. Chem. Phys. 1989, 91, 6873.
Schlutter, J., Schott, R., Kleinermanns, K. Chem. Phys. Lett. 1993, 213, 262.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2000, 113, 5287.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 114, 4.
Shu, J., Lin, J. J., and Wang, C. C., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 115, 842.
Shu, J., and Lin, J. J., Lee, Y. T., and Yang, X. J. Chem. Phys. 2001, 115, 849.
Simons, J. P., “Theoretical chemisty’, Utah, 2002
Sosa, C., and Schlegel, H. B. J. Am. Chem. Soc. 1987, 109, 7007.
Sumathi, R., Sengupta, D., and Nguyen, M. T. J. Phys. Chem. A. 1998, 102, 3175.
van Zee, R. D., Stephenson, J. C., Casassa, M. P. Chem. Phys. Lett. 1994, 223, 167.
van Zee, R. D., and Stephenson, J. C. J. Chem. Phys. 1995, 102, 6946.
Wada, S. I., and Obi, K. J. Phys. Chem. A. 1998, 102, 3481.
Xia, W. S., Zhu, R. S., Lin, M. C., and Mebel, A. M. Faraday Discuss. 2001, 119, 191.
Yamabe, T., Koizumi, M., Yamashita, K., and Tachibana, A. J. Am. Chem. Soc. 1984, 106, 2255.
Yamazaki H., and Cvetanovic, R. J., J. Chem. Phys. 1964, 41, 3703.