研究生: |
王舒慶 Wang, Su-Ching |
---|---|
論文名稱: |
在鉑奈米金屬團簇/氧化石墨烯表面進行:(1)甲烷轉換為甲醇及(2)一氧化碳轉換為二氧化碳之理論計算研究 Density-Functional Theory Calculation of Conversion of (1) CH4 into CH3OH, and (2) CO into CO2 on Graphene Oxide Supported Sub-nano Pt Cluster |
指導教授: |
何嘉仁
Ho, Jia-Jen |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 鉑奈米金屬團簇 、氧化石墨烯 、甲烷 、甲醇 、一氧化碳 、二氧化碳 、理論計算 |
英文關鍵詞: | CH4 |
論文種類: | 學術論文 |
相關次數: | 點閱:146 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇文章藉由密度泛函理論研究在鉑原子氧化石墨烯表面上進行之兩個反應:(1) 純甲烷之氧化反應以及 (2) 一氧化碳和氧氣氧化反應。鉑金屬團簇氧化石墨烯表面上對於甲烷、氧氣具有之吸附能分別為 -0.35、和 -1.53 eV。首先在甲烷與氧氣的轉換反應中,O2先行吸附在表面,吸附能為 -1.56 eV並斷鍵形成兩個O原子於表面,此步驟須跨過 0.49 eV的反應能障,CH4靠近吸附於鉑金屬團簇上並經過0.94 eV的反應能障打斷C-H鍵結,形成CH3基與OH基在表面,最後經由0.25 eV的能障形成第一個CH3OH。接著加入第二個CH4至催化表面,其吸附能為0.55 eV,且只需要跨越0.08 eV的反應能障即可斷鍵生成CH3與H,接著經0.80 eV屏障形成CH3O甲醇基,最後以越過0.75 eV的位能障礙形成第二個CH3OH。
我們同時也考慮氧化不完全之微量的CO若於O2斷鍵後進入反應,將會透過0.22~0.29 eV的能障並走Eley–Rideal反應途徑氧化產生CO2並回到初始表面。該結果可以應用於甲醇燃料電池中,防止CO毒化催化劑進而使其失去催化活性。
Based on density functional theory study, we studied two reaction mechanisms: (1) conversion of CH4 into CH3OH, and (2) oxidation of CO into CO2, on graphene oxide supported sub-nano Pt cluster. First, the O2 was adsorbed on the surface, then it crosses 0.49 eV of barrier to dissociate its O-O bond and form two O atoms. Second, CH4 was added and then broke its C-H bond to produce CH3 and OH, and the CH3 and OH coupled together to form a methanol, with the barriers of 0.94 and 0.25 eV, respectively. By adding the other CH4 with the adsobtion energy of 0.55 eV, and the C-H scission barrier 0.08 eV, the formation of CH3O and finally CH3OH are possible with the barriers of 0.80 and 0.75 eV, respectively. We also consider the CO oxidation into CO2 in which CO will be oxidized with O atom and produce CO2 through 0.22~0.29 eV barrier by Eley–Rideal (E.-R.) mechanism. This result could be applied in the fuel cell system to prevent the Pt electrode from being poisoned by the CO.
(1) Moos, A. M. FUEL CELLS. Ind. Eng. Chem. 1960, 52, 291–292.
(2) Young, G. J. Fuel Cell Panel Discussion. Ind. Eng. Chem. 1960, 52, 310–310.
(3) Kjeang, E.; Michel, R.; Harrington, D. A.; Djilali N.; Sinton, D. A Microfluidic Fuel Cell with Flow-Through Porous Electrodes. J. Am. Chem. Soc. 2008, 130, 4000–4006.
(4) Vijh, A. K. Electrochemical Principles Involved in a Fuel Cell. J. Chem. Educ. 1970, 47, 680-682.
(5) Zerbinati, O.; Mardan, A.; Richter, M. M. A Direct Methanol Fuel Cell. J. Chem. Educ. 2002, 79, 829-831.
(6) Tominaka, S.; Ohta, S.; Obata, H.; Momma, T.; Osaka, T. On-Chip Fuel Cell: Micro Direct Methanol Fuel Cell of an Air-Breathing, Membraneless, and Monolithic Design. J. Am. Chem. Soc. 2008, 130, 10456–10457.
(7) Bang, J. H.; Han, K.; Skrabalak, S. E.; Kim, H.; Suslick, K. S. Porous Carbon Supports Prepared by Ultrasonic Spray Pyrolysis for Direct Methanol Fuel Cell Electrodes. J. Phys. Chem. C 2007, 111, 10959–10964.
(8) Lin, M. L.; Huang, C. C.; Lo, M. Y.; Mou, C. Y. Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels: Application to Direct Methanol Fuel Cell. J. Phys. Chem. C 2008, 112, 867–873.
(9) Chung, Y.; Pak, C.; Park, G. S.; Jeon, W. S.; Kim, J. R.; Lee, Y.; Chang, H.; Seung, D. Understanding a Degradation Mechanism of Direct Methanol Fuel Cell Using TOF-SIMS and XPS. J. Phys. Chem. C 2008, 112, 313–318.
(10) Jiang, R.; Rong, C.; Chu, D. Combinatorial Approach toward High-Throughput Analysis of Direct Methanol Fuel Cells. J. Comb. Chem. 2005, 7, 272–278.
(11) Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683.
(12) Savin, A.; Becke, A. D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H. G. Electron Localization in Solid-state Structures of the Elements: the Diamond Structure. Angew. Chem. Int. Ed. Engl. 1991, 30, 409.
(13) Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 1990, 92, 5397-5403.
(14) Metz, R. B. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory. Methane-Methanol Conversion.
(15) Fratesi, G.;Gava, P.; Gironcoli, S. D. Direct Methane-to-Methanol Conversion: Insight from First-Principles Calculations. J. Phys. Chem. C 2007, 111, 17015-17019.
(16) Wong, K.; Chailapakul, O.;Eiamchai, P.; Horpratum, M.; Limnonthakul, P.; Patthanasettakul, V.; Sutapan, B.; Tuantranont, A.; Chindaudom, P.; Nuntawong, N. Surface-enhanced Raman scattering using silver nanocluster on anodic aluminum oxide template sensor toward protein detection. Biomedical Engineering. 2011, 56, 175-240.
(17) Fellahm, M. F.; Ona, I. Direct Methane Oxidation to Methanol by N2O on Fe- and Co-ZSM-5 Clusters with and without Water: A Density Functional Theory Study. J. Phys. Chem. C 2010, 114, 3042–3051.
(18) Rao, C. V.; C. Cabrera, R.; Ishikawa, Y. Graphene-Supported Pt-Au Alloy Nanoparticles: A Highly Efficient Anode for Direct Formic Acid Fuel Cells. J. Phys. Chem. C 2011, 115, 21963–21970.
(19) Tang, Y.;Yanh, Z.;Dai, X.;Ma, D.;Fu, Z. Formation, Stabilities, and Electronic and Catalytic Performance of Platinum Catalyst Supported on Non-Metal-Doped Graphene. J. Phys. Chem. C 2013, 117, 5258−5268.
(20) Qiu, J. D.; Wang, G. C.; Liang, R. P.; Xia, X. H.; Yu, H. W. Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C 2011, 115, 15639–15645.
(21) Clair, T. P. St.; Goodman, D. W. Metal nanoclusters supported on metal oxide thin films: bridging the materials gap. Topics in Catalysis 2000, 13, 5–19.
(22) Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C.; Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces J. Phys. Chem. C 2009, 113, 10842–10846.
(23) Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Lett. 2009, 9, 2255−2259.
(24) Yoo, E.; Okada, T.; Akita, T.; Kohyama, M.; Honma, I.; Nakamura, J. Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 2011, 196, 110−115.
(25) Kou, R.; Shao, Y.; Mei, D.; Nie, Z.; Wang, D.; Wang, C.; Viswanathan, V. V.; Park, S.; Aksay, I. A.; Lin, Y.; Wang, Y.; Liu, J. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. J. Am. Chem. Soc. 2011, 133, 2541−2547.
(26) Lin, J.; Wang, A.; Qiao, B.; Liu, X.; Yang, X.; Wang, X.; Liang, J.; Li, J.; Liu, J.; Zhang, T. Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. J. Am. Chem. Soc. 2013, 135, 15314−15317.
(27) Fampiou, I.; Ramasubramaniam, A. CO Adsorption on Defective Graphene-Supported Pt13 Nanoclusters J. Phys. Chem. C 2013, 117, 19927−19933.
(28) Yang, M.; Zhou, M.; Zhang, A.; Zhang, C. Graphene Oxide: An Ideal Support for Gold Nanocatalysts. J. Phys. Chem. C 2012, 116, 22336–22340.
(29) Grinou, A.; Yun, Y. S.; Cho, S. Y.;Park, H. H.; Jin, H. J. Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer. Materials, 2012, 5, 2927-2936
(30) Kresse, G.; Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
(31) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.
(32) Kresse, G.; Hafner, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
(33) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244.
(34) Blöchl, P. E. Projector augmented-rave method. Phys. Rev. B 1994, 50, 17953-17979.
(35) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
(36) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188.
(37) Ulitsky, A.; Elber, R. A new technique to calculate steepest descent paths in flexible polyatomic systems. J. Chem. Phys. 1990, 92, 1510-1511.
(38) Mills, G.; Jónsson, H.; Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305-337.
(39) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Reversible work transition state theory: application to dissociative adsorption of hydrogen. J. Chem. Phys. 2000, 113, 9901-9904.
(40) Sharma, S.; Ganguly, A.;Papakonstantinou, P.; Miao, X.; Li, M.; Hutchison, J. L.; Delichatsios, M.; Ukleja, S. Rapid Microwave Synthesis of CO Tolerant Reduced Graphene Oxide-Supported Platinum Electrocatalysts for Oxidation of Methanol. J. Phys. Chem. C 2010, 114, 19459–19466.
(41) Grinou, A.;Yun, Y. S.;Cho, S. Y.;Park, H. H.; Jin, H.-J. Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer. Materials 2012, 5, 2927-2936.