簡易檢索 / 詳目顯示

研究生: 金承勳
Kim, seunghun
論文名稱:
The effect of Chinese herbal medicine on migration and proliferation of liver cancer cells
指導教授: 方剛
Fang, Kang
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 中藥變化擴散肝癌
英文關鍵詞: Chinese herbal medicine, migration, proliferation, liver cancer
論文種類: 學術論文
相關次數: 點閱:321下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤細胞中,與基質金屬蛋白酶(matrix metalloproteinase,MMP)抑制劑可藉由許多不同的訊息傳遞路徑,達到具有抑制血管新生及細胞增生的效果。過去對於中草藥調節血管新生的作用機轉較少被探討。本研究使用各種不同中草藥投至人類肝癌細胞(HepG2,Hep3B及Huh 7),先以細胞存活率試驗及流式細胞儀篩選具生長抑制的藥物。實驗結果顯示,夏枯草最具抑制轉移的中草藥,它可藉由抑制MMP-9及MMP-2的蛋白質表現以抑制其蛋白質活性,此外也由wound healing assay及zymography證實這項實驗結果。
    本論文根據過細胞模式上的研究成果,初了強化過去的研究外,也會繼續進行動物層次研究,積極由肝癌腫瘤之實驗動物的數據,篩選出未來值得推廣至產業界發展的中草藥,計畫並會開始分析活性中草藥成份活性。以期達承建立以「證據基礎」的目標,證實中草藥之抗肝癌血管新生與轉移功能。

    In Chinese herbal medicine, the herbs are classified according to their properties. The use of specific herb(s) to treat diseases depends on the sign and symptom of patients. The herbalists believe that illness is an imbalance status of the body, and the herbs, based on their various characteristics which are in the accordance with the law of nature, can neutralize the sign and the symptom thereby keep an overall balanced status in patient’s body.
    Human hepatocellular liver carcinoma is one of the most frequently occurring human cancers worldwide and has been ranked as the second cancer killer in China since the 1990s. Although encouraging long-term survivals of human hepatocellular liver carcinoma patients have been obtained in some clinical centers, human hepatocellular liver carcinoma carries a very poor prognosis. One of the major reasons of the poor prognosis is the recurrence and metastasis after surgery. It has been reported that the 5-year recurrent rate of human hepatocellular liver carcinoma after resection is higher than 50% with most of the recurrences due to invasion-related spreading. To treat liver cancer, there is a growing belief that combination therapy using multiple drugs targeting various cellular pathways would yield better outcomes than monotherapies. In this respect, herbal cocktail which contains various phytochemicals targeting multiple dys-regulated pathways in cancer cells may provide an alternative/complementary way to treat cancers.
    Previously we have shown that CHM including鴨膽子(YDZ), 夏枯草(XKC)and 苦參(KS)affected cell metastasis in liver carcinoma cells. To prove if how they inhibit cell angiogenesis, we determined their effects on vascular endothelial cell migration, an essential step in angiogenesis by wound healing assay in human hepatocellular liver carcinoma cells, Huh7, HepG2 and Hep3B. Also MMP-9 and MMP-2 activities from cell lines tested were determined by zymography and Western blot. To analyze cell cycle distributions as cells were treated with different concentrations of drugs, flow cytometry was used. Also the viable cells were identified through trypan blue exclusion assay. The work showed that YDZ, XKC and KS exerted differential inhibition on migration and proliferation of liver cancer cells.

    Abstract iii 中文摘要 iv Background 1 -The significance of Chinese Herbal Medicine? 1 -Liver 4 -Cancer 5 -Cancer metastasis 7 -Matrix metalloproteinases (MMPs) 9 -鴨膽子(Ya Dan Zi; YDZ), 夏枯草(Xia Ku Cao; XKC)and 苦參(Ku Shen; KS) 12 Introduction 16 Aim of the Study 21 Materials and Methods 22 -Cell culture and treatment 22 -The determination of viable cells through trypan blue exclusion assay 23 -Flow cytometry 23 -Wound healing assay 24 -Gelatin Zymography 25 -Western blot analysis 25 -Statistical analysis 26 Results 36 -The determination of viable cells through trypan blue exclusion assay 27 -Flow cytometry 27 -Wound healing assay 28 -Gelatin Zymography 31 -Western blot analysis 32 Discussion 33 References 36 Appendix 45 Figures 47

    1. Mei-Hsien LEE, Yi-Yuan YANG, Yu-Hui TSAI, Yueh-Lun LEE, Po-Yuan HUANG, I-Jen HUANG, Kur-Ta CHENG, and Sy-Jye LEU. The effect of Chinese herbal medicines on TNF-α induced matrix metalloproteinase-1, -9 activities and interleukin-8 secretion. Botanical Studies 2008:49:301-309.
    2. American Cancer Society Web site. http://www.cancer.org/docroot/ETO/ content/ETO_5_3x_Chinese_Herbal_Medicine.asp. Last Revised 2008.01.11. Accessed 2010.04.21
    3. Luk JM, Wang XL, Liu P, Wong KF, Chan KL, Tong Y, Hui CK, Lau GK, Fan ST. Traditional Chinese herbal medicines for treatment of liver fibrosis and cancer: from laboratory discovery to clinical evaluation. Liver Int 2007:27:879-890.
    4. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. PNAS 2008:105:4826-4831.
    5. Shu X, McCulloch M, Xiao H, Broffman M, Gao J. Chinese herbal medicine and chemotherapy in the treatment of hepatocellular carcinoma: a meta-analysis of randomized controlled trials. Integr Cancer Ther 2005:4:219-229.
    6. McCulloch M, See C, Shu XJ, Broffman M, Kramer A, Fan WY, Gao J, Lieb W, Shieh K, Colford JM Jr. Astragalus-based Chinese herbs and platinum-based chemotherapy for advanced non-small-cell lung cancer: meta-analysis of randomized trials. J Clin Oncol 2006:24:419-430.
    7. Pan CX, Morrison RS, Ness J, Fugh-Berman A, Leipzig RM. Complementary and alternative medicine in the management of pain, dyspnea, and nausea and vomiting near the end of life - a systematic review. J Pain Symptom Manage 2000:20:374-387.
    8. Sagar SM, Wong R. Chinese medicine and supportive cancer care:a model for an evidence-based, integrative approach. Evidence-Based Integ Med. 2003:1:11-25.
    9. Macek C. East meets west to balance immunologic yin and yang. JAMA 1984:251:433-435.
    10. American Cancer Society Web site. http://www.cancer.org/docroot/CRI/content/CRI_2_4_1x_What_Is_Cancer.asp?sitearea=. Accessed 2010.04.21
    11. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002:2:563–572.
    12. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003:3:453–458.
    13. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007:7:834–846.
    14. Sullivan R, Graham CH. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 2007:26(2):319–331.
    15. Chan DA, Giaccia AJ. Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 2007:26(2):333–339.
    16. Cairns RA, Khokha R, Hill RP. Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 2003:3(7):659–671.
    17. Woessner JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991:5:2145-2154.
    18. Murphy G, Ward R, Gavrilovic J & Atkinson S. Physiological mechanisms for metalloproteinase activation. Matrix 1992:1:224-230.
    19. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Oncol 1995:7:728-735.
    20. Overall CM, Wrana JL & Sodek J. Transcriptional and post-transcriptional regulation of 72kDa gelatinase/type IV collagenase by transforming growth factor-B1 in human fibroblasts. J Biol Chem 1991:266:14064-14071.
    21. Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 1993:53:288-295.
    22. Vincenti MP, Coon CI, Lee O & Brinckerhoff CE. Regulation of collagenase gene expression by IL-1 beta requires transcriptional and post-transcriptional mechanisms. Nucleic Acids Res 1994:22:4818-4827.
    23. Chambers AF & Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997:89:1260-1270.
    24. Nagase H. Activation Mechanisms of matrix metalloproteinases Biol Chem 1997:378:151-160.
    25. Puistola U, Rönnberg L, Martikainen H & Turpeenniemi-Hujanen T. The human embryo produces basement membrane collagen (type IV collagen)-degrading proteinase activity. Hum Reprod 1989:4:309-311.
    26. Liotta LA, Steeg P & Stetler-Stevenson W. Cancer metastasis and angiogenesis. An imbalance of positive and negative regulation. Cell 1991:64:327-336.
    27. Turpeenniemi-Hujanen T, Rönnberg L, Kauppila A & Puistola U. Laminin in the human embryo implantation: analogy to the invasion by malignant cells. Fertil Steril 1992:58:105-113.
    28. Salo T, Mäkelä M, Kylmäniemi M, Autio-Harmainen H & Larjava H. Expression of MMP-2 and MMP-9 (72kDa and 92kDa type collagenase) during early human wound healing. Lab Invest 1994:70:176-182.
    29. Ågren MS. Gelatinase activity during wound healing. Br J Dermatol 1994:131:634-640.
    30. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980:284:67-68.
    31. MacDougall JR & Matrisian LM. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Met Rev 1995:14:351- 362.
    32. Stetler-Stevenson WG, Liotta LA & Kleiner DE Jr. Extracellular matrix 6:Role of matrix ¬metalloproteinases in tumor invasion and metastasis. FASEB J 1993:7:1434-1441.
    33. Mueller BM. Different roles for plasminogen activators and metalloproteinases in melanoma metastasis. Curr Topics Microbiol Immunol 1996:212:65-80.
    34. Pendás AM, Knäuper V, Puente XS, Llano E, Mattei MG, Apte S, Murphy G & Lopéz- Otin C. Identification and characterization of novel matrix metalloproteinase with unique structural characteristics, chromosomal location and tissue distribution. J Biol Chem 1997:272:4281-4286.
    35. Liotta LA, Abe S, Gehron Robey PG & Martin GR. Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor.Proc Natl Acad Sci USA 1979:76:2268-2272.
    36. Salo T, Liotta LA & Tryggvason K. Purification and characterization of murine basement membrane collagen degrading enzyme secreted by metastatic tumor cells. J Biol Chem 1983:258:3058-3063.
    37. Turpeenniemi-Hujanen T, Thorgeirsson UP, Hart IR, Grant SS & Liotta LA. Expression of collagenase IV (basement membrane collagenase) activity in murine tumor cell hybrids which differ in metastatic potential. J. Natl Cancer Inst 1985:75:99-103.
    38. Nakajima M, Welch DR, Belloni PN & Nicolson GL. Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials. Cancer Res 1987:47:4869-4876.
    39. Monteagudo C, Merino MJ, San-Juan J, Liotta LA & Stetler-Stevenson WG. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol 1990:136:585-592.
    40. D´Errico A, Garbisa S, Liotta LA, Castronovo V, Stetler-Stevenson WG & Griogioni WG. Augmentation of type IV collagenase, laminin receptor, and Ki67 proliferation antigen associated with human colon, gastric, and breast carcinoma progression. Mod Pathol 1991:4:239-246.
    41. Campo E, Tavassoli FA, Charonis AS, Stetler-Stevenson WG, Liotta LA &Merino MJ. Evaluation of basement membrane components and the 72 KDa type IV collagenase in serous tumours of the ovary. Am J Pathol 1992:6:500-507.
    42. Naruo S, Kanayama H, Aki M & Kagawa S. Gene expressions of type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) in human bladder cancers. Nippon Hinyokika Gakkai Zasshi 1993:84:841-850.
    43. Montironi R, Lucarini G, Gastaldini C, Galluzzi CM, Biagini G & Fabris G. Immuno¬histochemical evaluation of type IV collagenase (72-kd metalloproteinase) in prostatic intraepithelial neoplasia. Anticancer Res 1996:16:2057-2062.
    44. Kodate M, Kasai T, Hashimoto H, Yasumoto K, Iwata Y & Manabe H Expression of MMP (gelatinase) in T1 denocarcinoma of the lung. Pathol Int 1997:47:461-469.
    45. Väisänen A, Kallioinen M, Taskinen P J & Turpeenniemi-Hujanen T. Prognostic value of MMP-2 immunoreactive protein (72 kD type IV collagenase) in primary skin melanoma. J Pathol 1998:186:51-58.
    46. Pyke C, Ralfkiaer E, Huhtala P, Hurskainen T, Dano K & Tryggvason K. Localization of messenger RNA for mr 72000 and 92000 type IV collagenase in human skin cancers by in situ hybridization. Cancer Res 1992:52:1336-1341.
    47. Pyke C, Ralfkiaer E, Tryggvason K & Dano K. Messenger RNA for two type IV collagenases is located in nonmalignant stromal cells in human colon cancer. Am J Pathol 1993:142:359-365.
    48. Autio-Harmainen H, Hurskainen T, Niskasaari K, Höyhtyä M & Tryggvason K. Simultaneous expression of 72 kilodalton type IV collagenase and type V collagen α1(IV) chain genes by cells of early human placenta and gestational endometrium. Lab.Invest. 1992:67:191-200.
    49. Autio-Harmainen H, Karttunen T, Hurskainen T, Höyhtyä M, Kauppila A & Tryggvason K. Expression of 72 kDa type IV collagenase in bening and malignant ovarian tumors. Lab. Invest. 1993:69:312-321.
    50. Poulsom R, Hanby AM, Pignatelli M, Jeffery RE, Longcroft JM, Rogers L & Stamp GW. Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol 1993:46:429- 436.
    51. Ward RV, Atkinson SJ, Reynolds JJ & Murphy G. Cell surface-mediated activation of progelatinase A: demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts. Biochem J 1994:304:263-269.
    52. Jin Hua and Ruth J Muschel. Inhibition of Matrix Metalloproteinase 9 Expression by a Ribozyme Blocks Metastasis in a Rat Sarcoma Model System. Cancer Res 1996:56:5279-5284.
    53. Silbiger SM, Jacobsen VL, Cupples RL & Koski RA. Cloning of cDNAs encoding human TIMP-3, a novel member of the tissue inhibitor of metalloproteinase family.Gene 1994:141:293-297.
    54. Greene J, Wang M, Liu YE, Raymond LA, Rosen C & Shi YE. Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 1996: 271:30375-30380.
    55. Howard EW, Bullen EC & Banda MJ. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J Biol Chem 1991a :266:13064-13069.
    56. Goldberg GI, Strongin A, Collier IE, Genrich LT & Marmer BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992:267:4583-4591.
    57. Howard EW, Bullen EC & Banda MJ. Preferential inhibition of 72- and 92-kDa gelatinases by tissue inhibitor of metalloproteinases-2. J Biol Chem 1991b :266:13070-13075.
    58. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, De Carlo A & Engler JA. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993:4:197-250.
    59. Corcoran ML, Hewitt RE, Kleiner Jr DE & Stetler-Stevenson WG. MMP-2: expression, activation and inhibition. Enzyme Protein 1996:49:7-19.
    60. Imai K, Ohuchi E, Aoki T, Nomura H, Fujii Y, Sato H, Seiki M & Okada Y.Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 1996:56:2707-2710.
    61. Will H, Atkinson SJ, Butler GS, Smith B & Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem 1996:271:17119-17123.
    62. Atkinson SJ, Crabbe T, Cowell S, Ward RV, Butler MJ, Sato H, Seiki M, Reynolds JJ & Murphy G. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 1995:270:30479-30485.
    63. Cao J, Sata H, Takino T & Seiki M. The C-terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro-gelatinase A activation. J Biol Chem 1995:270:801-805.
    64. Sato H, Takino T, Kinoshita T, Imai K, Okada Y, Stevenson WGS & Seiki M. Cell surface binding and activation of gelatinase A induced by expression of embrane-type- 1-matrix metalloproteinase (MT1-MMP). FEBS Lett 996:385:238-240.
    65. Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J Natl Cancer Inst 1994:86:299-304.
    66. Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, Kung H-F, Colburn NH & Sun Y. Supression of in vivo tumor growth and inducyion of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis 1996:17:1805-1811.
    67. Imren S, Kohn DB, Shimada H, Blavier L & DeClerck YA. Overexpression of tissue inhibitor of metalloproteinases-2 retrovira-mediated gene transfer in vivo inhibits tumor growth and invasion. Cancer Res 1996:56:2891-2895.
    68. Murphy AN, Unsworth EJ & Stetler-Stevenson WG. Tissue inhibitor of metalloproteinase-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993:157:351-358.
    69. Hasbi M. Pharmacognostic study of Brucea amarissima Merr. from Gowa (South Sulawesi, Indonesia), Isolation and identification quassinoid compound by thin layer chromatography. Faculty of Natural Sciences, Hasanuddin University, Ujung Pandang. 1979:1: 6-7.
    70. Alam G, Soegihardjo CJ, Sudarsono. Detection of indole alkaloid in the callus culture of Brucea javanica (L) Merr, Proc. Symposium Medicinal Plants Research VIII, Bogor, Indonesia. 1995:452-456.
    71. Kim IH, Takashima S, Hitotsuyanagi Y, et al. New quassinoids, javanicolides C and D and javanicosides B-F, from seeds of Brucea javanica. J Nat Prod May 2004:67:5:863-8.
    72. Luyengi L, Suh N, Fong HH, et al. A lignan and four terpenoids from Brucea javanica that induce differentiation with cultured HL-60 promyelocytic leukemia cells. Phytochemistry September 1996:43:2:409-12.
    73. http://www.altnature.com. Alternative Nature Online Herbal. Copyright © 1997 – 2010. All Rights Reserved by Alternative Nature Enterprises.
    74. http://herbalmedicine.suite101.com. Jul 30, 2010. By Jen L. Jones.
    75. http://www.mdidea.com/products/proper/proper05301.html. Last edit date:10th,Mar.2010.
    76. Carlo La Vecchia, Eva Negri, Barbara D'Avanzo, Peter Boyle, and Silvia Franceschi, Cancer Res 1990:50:6274-6277.
    77. Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation 2002: 70:498–505.
    78. Mao C, Domenico DR, Kim K, Hanson DJ, Howard JM. Observations on the developmental patterns and the consequences of pancreatic exocrine adenocarcinoma. Findings of 154 autopsies. Arch Surg 1995;130:125–34.
    79. Stangl R, Altendorf-Hofmann A, Charnley RM, Scheele J. Factors influencing the natural history of colorectal liver metastases. Lancet 1994;343:1405–10.
    80. Kozlowski JM, Fidler IJ, Campbell D. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 1984;44:3522–9.
    81. Vezeridis MP, Meitner PA, Tibbetts LM. Heterogeneity of potential for hematogenous metastasis in a human pancreatic carcinoma. J Surg Res 1990:48:51–5.
    82. Morikawa K, Walker SM, Jessup JM, Fidler IJ. In vivo selection of highly metastatic cells from surgical specimens of different primary human colon carcinomas implanted into nude mice. Cancer Res 1988;48:1943–8.
    83. Yasoshima T, Denno R, Kawaguchi S. Establishment and characterization of human gastric carcinoma lines with high metastatic potential in the liver: changes in integrin expression associated with the ability to metastasize in the liver of nude mice. Jpn J Cancer Res 1996:87:153–60.
    84. Takamori H, Hiraoka T, Yamamoto T. Expression of tumor-associated carbohydrate antigens correlates with hepatic metastasis of pancreatic cancer: clinical and experimental studies. Hepatogastroenterology 1996:43: 748–55.
    85. Ohta T, Futagami F, Arakawa H. [Inhibitory effect of FOY-305 on liver metastasis of the pancreatic cancer]. Gan To Kagaku Ryoho 1996:23:1669–72.
    86. Tibbetts LM, Doremus CM, Tzanakakis GN, Vezeridis MP. Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production. Cancer 1993:71:315–21.
    87. Takiguchi S, Kumazawa E, Shimazoe T, Tohgo A, Kono A. Antitumor effect of DX-8951, a novel camptothecin analog, on human pancreatic tumor cells and their CPT-11-resistant variants cultured in vitro and xenografted into nude mice. Jpn J Cancer Res 1997:88: 60–9.
    88. O’Reilly MS, Holmgren L, Chen C, Folkman J.Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996:2:689–92.
    89. Kisker O, Onizuka S, Banyard J, et al. Generation of multiple angiogenesis inhibitors by human pancreatic cancer. Cancer Res 2001:61:7298–304.
    90. Tan MH, Holyoke ED, Goldrosen MH. Murine colon adenocarcinoma: syngeneic orthotopic transplantation and subsequent hepatic metastases. J Natl Cancer Inst 1977:59:1537–44.
    91. Marincola F, Taylor-Edwards C, Drucker B, Holder WD, Jr. Orthotopic and heterotopic xenotransplantation of human pancreatic cancer in nude mice. Curr Surg 1987:44:294–7.
    92. Fu X, Guadagni F, Hoffman RM. A metastatic nudemouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci U S A 1992:89:5645–9.
    93. Furukawa T, Kubota T, Watanabe M, Kitajima M, Hoffman RM. A novel ‘‘patient-like’’ treatment model of human pancreatic cancer constructed using orthotopic transplantation of histologically intact human tumor tissue in nude mice. Cancer Res 1993:53:3070–2.
    94. Aubert M, Panicot L, Crotte C. Restoration of a (1,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells. Cancer Res 2000:60:1449–56.
    95. Kuo TH, Kubota T, Watanabe M. Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci U S A 1995:92:12085–9.
    96. Ki-Tae Ha, June-Ki Kim, Young-Choon Lee, and Cheorl-Ho Kim. Inhibitory effect of Daesungki-Tang on the invasiveness potential of hepatocellular carcinoma
    through inhibition of matrix metalloproteinase-2 and -9 activities. Toxicology and Applied Pharmacology 2004:200:1 – 6.
    97. Xu Yuxian, Tian Feng, Li Ren, and Liu Zhengcai. Tanshinone II-A inhibits invasion and metastasis of human hepatocellular carcinoma cells in vitro and in vivo. Tumori, 2009:95:789-795.
    98. Katy P.Y. Siu, Judy Y.W. Chan, K.P. Fung. Effect of arsenic trioxide on human hepatocellular carcinoma HepG2 cells: Inhibition of proliferation and induction of apoptosis. Life Sciences 2002:71:275–285.
    99. Hiroshi Izuta, Masamitsu Shimazawa, Kazuhiro Tsuruma, Yoko Araki, Satoshi Mishima and Hideaki Hara. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC Complementary and Alternative Med 2009:9:45.
    100. Sang-Oh Yoon, Soo-Jin Park, Chang-Hyun Yun and An-Sik Chung. Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis. Journal of Biochemistry and Molecular Biol 2003:36:128-137.
    101. S. Yamagata, Y. Yoshii, J.G. Suh, R. Tanaka, S. Shimizu. Occurrence of an active form of gelatinase in human gastric and colorectal carcinoma tissues. Cancer Lett 1991:59:51–55.
    102. K. Tamakoshi, F. Kikkawa, A. Nawa, H. Ishikawa, K. Mizuno, A. Tamakoshi, S. Yamagata, N. Suganuma, Y. Tomoda. Characterization of extracellular matrix-degrading proteinase and its inhibitor in gynecologic cancer tissues with clinically different metastatic form. Cancer 1995:76:2565–2571.
    103. M. Hamaguchi, S. Yamagata, A.A. Thant, H. Xiao, H. Iwata, T. Mazaki, H. Hanafusa. Augmentation of metalloproteinase (gelatinase) activity secreted from Rous sarcoma virus-infected cells correlates with transforming activity of src. Oncogene 1995:10:1037–1043.
    104. R.O. Miura, S. Yamagata, Y. Miura, T. Harada, T. Yamagata. Analysis of glycosaminoglycan-degrading enzymes by substrate gel electrophoresis zymography). Anal. Biochem 1995:225:333–340.
    105. M. Cao, M. Sahmi, J.G. Lussier, C.A. Price. Plasminogen activator and serine protease inhibitor-E2 (protease nexin-1) expression by bovine granulosa cells in vitro. Biol. Reprod 2004:71:887–893.
    106. S. Hattori, H. Fujisaki, T. Kiriyama, T. Yokoyama, S. Irie. Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates. Anal. Biochem 2002:301:27–34.

    下載圖示
    QR CODE