研究生: |
高揚彥 Kao, Yang-Yen |
---|---|
論文名稱: |
水通道蛋白8aa在斑馬魚仔魚上的功能性研究 Functional study of aquaporin 8aa in skin of zebrafish larva |
指導教授: |
林豊益
Lin, Li-Yih |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 水通道蛋白 、氨 、斑馬魚 、二氧化碳 |
英文關鍵詞: | aquaporin, ammonia, zebrafish, CO2 |
論文種類: | 學術論文 |
相關次數: | 點閱:308 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水通道蛋白(aquaporins, AQPs)是一群執行水分子通透的細胞膜蛋白。此外,有些AQPs也被發現具有二氧化碳、甘油、氨與尿素的通透性。最近研究將斑馬魚(Danio rerio) aqps基因表現於蛙卵會增加細胞膜對二氧化碳/NH3通透性。然而,目前仍沒有活體的實驗證實AQPs在動物體內參與二氧化碳(carbon dioxide, CO2)及NH3的通透能力。在本篇研究中,在原位雜交反應的結果中發現aqp8aa主要表現於斑馬魚仔魚的鰓上及皮膚上,而在利用免疫組織染色搭配原位雜交反應的結果發現AQP8AA主要在皮膚上表現於兩型的離子細胞上(HR cells and NaR cells)。而在高氨馴養(10 mM NH4+)的情況下aqp8aa的mRNA表現量有顯著提升的情況,而在高碳酸水馴養的情況下卻無此情況產生。利用反義核酸(morpholino oligonucleotides)抑制aqp8aa蛋白質的表現後,利用掃描式離子選擇性電極(scanning ion-selective technique, SIET)來分析H+及NH4+在斑馬魚仔魚皮膚及離子細胞上的運輸。在knockdown aqp8aa表現後,發現仔魚整體的H+及NH4+的排放量都有下降的情況,而在特定細胞也有相似的結果,而在CO2短暫灌流的結果中也發現魚體對於H+排放量都有下降的情況,在特定細胞也有相似的結果,由此結果推論AQP8AA在斑馬魚的仔魚上可能參與著此三物質的運輸。
Aquaporins (AQPs) are integral membrane proteins that facilitate water transport across cell membrane. In addition, some type of AQPs was also found to facilitate diffusion of CO2, glycerol, NH3, and urea. Recently, in vitro studies with Xenopus oocytes showed that AQP8 is able to facilitate CO2/NH3 diffusion. However, in vivo study was lacking to support AQP’s function in CO2/NH3 transport. In this study, AQP8AA were identified in the gills and larval skin of zebrafish. Triple in situ hybridization / immunohistochemistry localized AQP8AA in two subtypes of ionocytes (HR cells and NaR cells). The protein and mRNA expressions of AQP8aa were induced by high-ammonia acclimation (10 mM NH4+) but not hypercapnia water acclimation (1% CO2). Using morpholino oligonucleotides to knockdown AQP8AA protein expression and a scanning ion-selective technique (SIET) to analyze carbonic acid (H+) and NH4+ transport at the skin ionocytes of larvae, this study suggests that AQP8AA facilitates CO2/NH3 transport in the skin ionocytes.
Agre, P., (2006). The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13.
An, K.W., Kim, N.N. and Choi, C.Y., (2008). Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation. Fish. PHysiol. Biochem. 34, 185-194.
Aoki, M., Kaneko, T., Katoh, F., Hasegawa, S., Tsutsui, N. and Aida, K., (2003). Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J.Exp. Biol. 206, 3495-3505.
Bobe, J., Montfort, J., Nguyen, T. and Fostier, A., (2006). Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays. Reprod. Biol. Endocr. 4, 39.
Brunelli, E., Mauceri, A., Salvatore, F., Giannetto, A., Maisano, M. and Tripepi, S., (2010). Localization of aquaporin 1 and 3 in the gills of the rainbow wrasse Coris julis. Acta. Histochem. 112(3), 251-258.
Chen, L.M., Zhao, J., Musa-Aziz, R., Pelletier, M.F., Drummond, I.A. and Boron, W.f., (2010). Cloning and characterization of a zebrafish homologue of human AQP1: a bifunctional water and gas channel. Am. J. PHysiol. Regul. Integr. Comp. PHysiol. 299, 1163-1174.
Cutler, C.P. and Cramb, G., (2002). Branchial expression of an aquaporin 3(AQP-3) homologue is down-regulated in the European eel Anguilla anguilla following seawater acclimation. J. Exp. Biol. 205, 2643-2651.
Cutler, C.P., Martinez, A.S. and Cramb, G., (2007). The role of aquaporin 3 in teleost fish. Comp. Biochem. PHysiol. A Mol. Integr. PHysiol. 148, 82-91.
Deane, E.E. and Woo, N.Y.S., (2006). Tissue distribution, effects of salinity acclimation and ontogeny of aquaporin 3 in the marine teleost, silver sea bream (Sparus sarba). Mar. Biotechnol. 8, 663-671.
Denker, B.M., Smith, B.L., Kuhajda, F.P. and Agre, P., (1988). Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263, 15634-15642.
Endeward, V., Musa-Aziz, R., Cooper, G.J., Chen, L.M., Pelletier, M.F., Virkki, L.V., Supuran, C.T., King, L.S., Boron, W.F. and Gros, G., (2006). Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. FASEB J. 20, 1974-1981.
Evans, D. H., (2008). Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. PHysiol. Regul. Integr. Comp. PHysiol. 295, R704-713.
Evans, D. H., Piermarini, P. M. and Choe, K. P., (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. PHysiol. Rev. 85, 97-177.
Forster, R. E., Gros, G., Lin, L., Ono, Y. and Wunder, M., (1998). The effect of 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate on CO2 permeability of the red blood cell membrane. Proc. Natl. Acad. Sci. U S A. 95, 15815-15820.
Giffard-Mena, I., Boulo, V., Aujoulat, F., Fowden, H., Castille, R., Charmantier, G. and Cramb, G., (2007). Aquaporin molecular characterization in the sea-bass (Dicentrarchus labrax): the effect of salinity on AQP1 and AQP3 expression.Comp. Biochem. PHysiol. A Mol. Integr. PHysiol. 148, 430-444.
Hemptinne, A. and Huguenin, F.,(1984). The influence of muscle respiration and glycolysis on surface and intracellular pH in fibres of the rat soleus. J. PHysiol. 347, 581-592.
Horng, J.L., Lin, L.Y. and Hwang, P.P., (2009). Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am J PHysiol Cell PHysiol. 296(4), C682-692
Horng, J.L., Lin, L.Y., Huang, C.J., Katoh, F., Kaneko, T. and Hwang, P.P.,(2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J PHysiol Regul Integr Comp PHysiol. 292(5), R2068-2076.
Hwang, P. P., (2009). Ion uptake and acid secretion in zebrafish (Danio rerio). J. Exp. Biol. 212, 1745-1752.
Hwang, P. P. and Lee, T. H., (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. PHysiol. A. Mol. Integr. PHysiol. 148, 479-497.
Hwang, P.P., Lee, T.H. and Lin, L.Y., (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am. J. PHysiol. Regul. Integr. Comp. PHysiol. (Epub ahead of print)
Ishibashi, K., Sasaki, S., Fushimi, K., Uchida, S., Kuwahara, M., Saito, H., Furukawa, T., Nakajima, K., Yamaguchi, Y. and Gojobori, T., (1994). Molecularcloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc. Natl. Acad. Sci. U S A. 91(14), 6269-6273.
Lignot, J.H., Cutler, C.P., Hazon, N. and Cramb, G., (2002). Immunolocalisation of aquaporin 3 in the gill and the gastrointestinal tract of the European eel Anguilla anguilla. J. Exp. Biol. 205, 2653-2663.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P., (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. PHysiol. Cell. PHysiol. 290, C371-378.
Lin, T.Y., Liao, B.K., Horng, J.L., Yan, J.J., Hsiao, C.D. and Hwang, P.P., (2008). Carbonic anhydrase 2-like a and 15a are involved in acid-base regulation and Na+
uptake in zebrafish H+-ATPase-rich cells. Am. J. PHysiol. Cell. PHysiol. 294(5),
C1250-1260.
Litman, T., Søgaard, R. and Zeuthen, T., (2009). Ammonia and urea permeability of mammalian aquaporins. Handb. Exp. PHarmacol. 190, 327-358.
Martínez, A.S., Cutler, C.P., Wilson, G.D., PHillips, C., Hazon, N. and Cramb, G. (2005). Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. Am. J. PHysiol. Regul. Integr. Comp. PHysiol. 288, 1733-1743.
McLamore, E.S., Porterfield, D.M. and Banks, M.K., (2009). Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux. Biotechnol. Bioeng. 102(3), 791-799.
Musa-Aziz, R., Chen, L.M., Pelletier, M.F. and Boron, W.F., (2009a). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. U S A. 106(13), 5406-5411.
Nakhoul, N.L., Davis, B.A., Romero, M.F. and Boron, W.F., (1998). Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Am. J. PHysiol. 274, 543-548.
Nawata, C.M., Hirose, S., Nakada, T., Wood, C.M. and Kato, A., (2010). Rh
glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during
high environmental ammonia exposure. J. Exp. Biol. 213(Pt 18), 3150-3160.
Perry, S.F., Braun, M.H., Noland, M., Dawdy, J. and Walsh, P.J., (2010). Do zebrafish Rh proteins act as dual ammonia-CO2 channels? J. Exp. Zool. A Ecol Genet PHysiol. 313(9), 618-621.
Prasad, G.V., Coury, L.A., Finn, F. and Zeidel, M.L., (1998). Reconstituted aquaporin 1 water channels transport CO2 across membranes. J. Biol. Chem. 273(50), 33123-33126.
Preston, G.M., Carroll, T.P., Guggino, W.B. and Agre, P., (1988). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 256, 385-387.
Purkerson, J.M. and Schwartz, G.J., (2007). The role of carbonic anhydrases in renal pHysiology. Kidney Int. 71, 103-115.
Raldúa, D., Otero, D., Fabra, M. and Cerdà, J., (2008). Differential localization and regulation of two aquaporin-1 homologs in the intestinal epithelia of the marine teleost Sparus aurata. Am. J. PHysiol. Regul. Integr. Comp. PHysiol. 294, 993- 1003.
Rojek, A., Praetorius, J., Frøkiaer, J., Nielsen, S. and Fenton, R.A., (2008). A current view of the mammalian aquaglyceroporins. Annu. Rev. PHysiol.70, 301-327.
Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y., (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am. J. PHysiol. Cell. PHysiol. 295, C1625-1632.
Smith, P.J., Hammar, K., Porterfield, D.M., Sanger, R.H., Trimarchi, J.R., (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc. Res. Tech. 46(6), 398-417.
Tingaud-Sequeira, A., Calusinska, M., Finn, R.N., Chauvigné, F., Lozano, J. and Cerdà, J., (2010). The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol. Biol. 10, 38.
Tipsmark, C.K., Sørensen, K.J. and Madsen, S.S., (2009). Aquaporin expression dynamics in osmoregulatory tissues of Atlantic salmon during smoltification and seawater acclimation. J. Exp. Biol. 213, 368-379.
Tse, W. K. F., Au, D. W. T. and Wong, C. K. C., (2006). Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem. BiopHys. Res. Commun. 346, 1181-1190.
Uehlein, N., Lovisolo, C., Siefritz, F., Kaldenhoff, R., (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with pHysiological functions. Nature. 425(6959), 734-737.
Verkman, A.S., (2009). Knock-out models reveal new aquaporin functions. Handb. Exp. PHarmacol. 190, 359-381.
Watanabe, S., Hirano, T., Grau, E.G. and Kaneko, T., (2008). Osmosensitivity of prolactin cells is enhanced by the water channel aquaporin-3 in a euryhaline Mozambique tilapia (Oreochromis mossambicus). Am. J. PHysiol. Regul. Integr. Comp. PHysiol. 296, 446-453.
Watanabe, S., Kaneko, T. and Aida, K., (2005). Aquaporin-3 expressed in the
basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis
mossambicus adapted to freshwater and seawater. J. Exp. Biol. 208, 2673-2682.