簡易檢索 / 詳目顯示

研究生: 楊淑媚
Yang, Shu-Mei
論文名稱: 第一部份 使用含有 α, β-不飽和酮衍生物與不同的親電性試劑進行有機不對稱催化反應 / 第二部份 由多官能性的磷兩性離子經由分子內選擇性的 Wittig 反應合成多取代苯并呋喃和呋喃[3,2-c]香豆素
Asymmetric organocatalysis reactions of various electrophiles and α,β-unsaturated ketones / Chemoselective synthesis of substituted benzofurans and furo[3,2-c]coumarins from functional phosphorus zwitterions via intramolecular Wittig reactions
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 757
中文關鍵詞: 有機不對稱催化苯并哌喃苯并呋喃呋喃香豆素兩性離子
英文關鍵詞: Asymmetric Organocatalytic, Chromeno[3,4-d]pyrrole, benzofurans, furo[3,2-c]coumarins, zwitterion
DOI URL: http://doi.org/10.6345/NTNU201900030
論文種類: 學術論文
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩大部分,第一部份:使用含有 α, β-不飽和酮衍生物與不同的親電性試劑進行有機不對稱催化反應,其包含三章,依序介紹如下:
    第一章 用鄰羥基芳醛亞胺衍生物對 1, 3-茚二酮衍生物進行 [3+2] Cycloaddition / Double Acetalization / Lactonization Cascade 合成具有五個四級碳中心的產物
    利用鄰羥基芳醛亞胺衍生物 63 和 1, 3-茚二酮衍生物 45 使用接有方醯胺基片段的奎尼丁催化劑作用下,可先進行一個 [3+2] 環加成後再進行 Double acetalization / Lactonization 的串聯反應,可以得到單一非鏡像異構物且產率可達 97%,而鏡像超越值也達 99%,具有六個立體中心,其中的五個為四級碳結構。
    第二章 使用 3-亞烷基羥吲哚衍生物對 1, 3-茚二酮衍生物進行 Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade 合成含有五個四級碳中心的化合物
    利用 1, 3-茚二酮衍生物 45 和 3-亞烷基羥吲哚衍生物 129 使用接有硫脲片段的奎寧催化劑,在溫和的反應條件下,可進行 Vinylogous Michael addition / Acetalization / oxa-Michael addition / Michael addition 的不對稱串聯反應,產率最好可達 92%,鏡像超越值有 98%,產物結構具有六個立體中心,其中的五個為四級碳結構。
    第三章 以α, β-不飽和丁內醯胺衍生物與香豆素衍生物進行有機催化之研究
    一新穎的催化 Michael 加成-異構化反應,有效地合成 Rauhut-Currier 類型的產物,此反應得到少見的γ-不飽和丁內醯胺進行 α位置加成產物,並擁有很好的非鏡像選擇性。此反應還能進一步經由水解後脫脫羧,得到不能由一般查耳酮合成出的α位置加成產物。

    第二部分:由多官能性的磷兩性離子經由分子內選擇性的 Wittig 反應合成多取代苯并呋喃和呋喃[3,2-c]香豆素
    利用一種具有高效能和化學選擇性的一鍋化合成策略,進行兩種以香豆素結構為基底的交叉偶聯化合物(呋喃[3,2-c]香豆素及苯并呋喃衍生物)的多樣性合成,其關鍵在於官能化磷兩性離子的初始化學選擇性醯化反應,其與醯化試劑的相對反應活性高低及添加順序有關,最後進行化學選擇性分子內 Wittig 反應以合成出其中一種香豆素衍生物。

    This thesis is divided into two parts, first part is asymmetric organocatalysis reactions of various electrophiles and α, β-unsaturated ketones, which including three chapters:
    Chapter 1:Asymmetric Organocatalytic [3+2] Cycloaddition / Double Acetalization / Lactonization Cascade Reaction of o-Hydroxyl aromatic aldimine with 1, 3-indandione derivatives: Synthesis of products with five Chiral Quaternary Stereocenters.
    A sequential [3+2] cycloaddition then double acetalization and lactonization resulting in the cascade product 64 using o-Hydroxyl aromatic aldimine 63 and 1, 3-indandione derivatives 45, bearing six including five quaternary stereocenters was obtained as a single diasteromer in up to 97% yield and 99% ee.
    Chapter 2:Asymmetric Organocatalytic Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade Reaction of 3-Alkylidene Oxindoles with 1, 3-indandione derivatives: Synthesis of products with five Chiral Quaternary Stereocenters.
    A Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade Reaction resulting in the cascade product 130 using 3-Alkylidene Oxindoles 129 and 1, 3-indandione derivatives 45, bearing six including five quaternary stereocenters was obtained as a single diasteromer in up to 92% yield and 98% ee.
    Chapter 3:Organocatalysis of α,β-unsaturated γ-butyrolactam and coumarin derivatives.
    A novel, base-catalyzed and highly diastereoselective direct Michael addition-isomerization sequence is presented for the efficient synthesis of Rauhut-Currier-type adducts. It was quite unexpected to see the α-addition of γ-butyrolactam onto the 3-acyl coumarin derivatives rather than the γ-addition, which is more common. The adducts could further undergo hydrolysis/decarboxylation to generate the products which are equivalent to those obtained by α-addition of γ-butyrolactam onto the corresponding chalcones.

    Part II. An Efficient Synthesis of furo[3,2-c]coumarins and 3-benzofuranyl chromenones via Chemoselective O-Acylations and Intramolecular Wittig Reactions.
    A highly efficient and chemoselective one-pot protocol for the diversity-oriented synthesis of two coumarin-based formal cross-coupling adducts, viz. furo[3,2-c]coumarins and 3-benzofuranyl chromenones is described. Key attributes of the methodology comprise an initial chemoselective acylation of functionalized phosphorus zwitterions followed by chemoselective intramolecular Wittig reaction that preferentially resulted in one of the two coumarin derivatives in high yields, depending on relative reactivities and addition sequence of acylating agents.

    簡歷 I 摘要 II Abstract IV 第一部份 使用含有 α, β-不飽和酮衍生物與不同的親電性試劑進行有機不對稱催化反應 1 前言 1 建立四級碳立體中心的重要性與研究概況 1 建構四級碳立體中心的六種催化模式 2 聚烯烴環化 (Polyene cyclizations) 2 過渡金屬催化 (Transition-metal-catalyzed insertions) 3 手性碳親核試劑耦合反應 (Coupling of chiral carbon nucleophiles) 4 手性碳親電試劑耦合反應 (Coupling of chiral carbon eletrophiles) 5 去對稱化反應 (Desymmetrization reactions) 6 環化加成反應 (Cycloaddition reactions) 7 第一章 使用鄰羥基芳醛亞胺衍生物對 1, 3-茚二酮衍生物進行 [3+2] Cycloaddition / Double Acetalization / Lactonization Cascade 合成具有五個四級碳中心的產物 9 1-1. 研究動機 9 1-1-1 四取代烯類化合物的反應潛力 9 1-1-2 選用 o-Hydroxyl aromatic aldimine 作為反應物的原因 9 1-1-3 o-Hydroxyl aromatic aldimine 過往文獻回顧 10 1-2. 實驗結果與討論 13 1-2-1 最佳化催化劑的篩選 13 1-2-2 最佳化溶劑的篩選 14 1-2-3 酸性添加劑的篩選 15 1-2-4 分子篩添加劑的篩選 16 1-2-5 起始物當量數最佳化的篩選 17 1-2-6 最佳化溫度的篩選 18 1-2-7 催化劑添加量的篩選 18 1-2-8 取代基效應 19 1-2-9 衍生化反應 22 1-2-10 反應機構的探討 24 1-3. 結論 25 1-4. 實驗部分 26 1-4-1 分析儀器及基本實驗操作 26 1-4-2 實驗步驟 27 1-4-3 起始物實驗數據 28 1-4-4 產物實驗數據 38 1-5. 參考文獻 55 第二章 使用 3-亞烷基羥吲哚衍生物對 1, 3-茚二酮衍生物進行 Vinylogous Michael / Acetalization / oxa-Michael / Michael Cascade 合成含有五個四級碳中心的化合物 57 2-1. 研究動機 57 2-1-1 3-亞烷基-2-羥吲哚衍生物之天然物結構介紹 57 2-1-2 利用3-亞烷基-2-羥吲哚為親核性試劑來進行插烯 (Vinylogous) 反應之文獻 59 2-2. 研究動機 66 2-3. 實驗結果與討論 68 2-3-1 最佳化催化劑的篩選 68 2-3-2 最佳化溶劑的篩選 71 2-3-3 水對反應的影響 73 2-3-4 添加劑的篩選 73 2-3-5 溶劑添加量的篩選 74 2-3-6 最佳化溫度的篩選 75 2-3-7 保護基的篩選 76 2-3-8 催化劑添加量的篩選 77 2-3-9 取代基效應 78 2-3-10 衍生化反應 83 2-3-11 反應機構的探討 84 2-4. 結論 86 2-5. 未來展望 86 2-6. 實驗部分 87 2-6-1 分析儀器及基本實驗操作 87 2-6-2 反應步驟 88 2-6-3 起始物實驗數據 89 2-6-4 產物實驗數據 108 2-7. 參考文獻 131 第三章 以α, β-不飽和丁內醯胺衍生物與香豆素衍生物進行有機催化之研究 132 3-1. α, β -不飽和丁內醯胺衍生物的有機催化之發展與討論 132 3-2. 研究動機 140 3-3. 實驗結果與討論 142 3-3-1 反應機構的探討 143 3-3-2 最佳化催化劑篩選 144 3-3-3 最佳化溶劑篩選 145 3-3-4 在最佳化溶劑下再次進行催化劑的篩選 146 3-3-5 取代基效應 146 3-3-6 開環水解部分 150 3-3-7 水解產物之取代基效應 154 3-3-8 衍生化反應 155 3-3-9 有機不對稱催化之最佳化條件篩選 155 3-4. 結論 156 3-5. 實驗部分 157 3-5-1 分析儀器及基本實驗操作 157 3-5-1 實驗步驟 159 3-5-2 起始物實驗數據 160 3-5-3 產物實驗數據 166 3-6. 參考文獻 185 第二部份 由多官能性的磷兩性離子經由分子內選擇性的 Wittig 反應合成多取代苯并呋喃和呋喃[3,2-c]香豆素 186 4-1. 前言 186 4-1-1 呋喃香豆素的介紹 186 4-1-2 呋喃香豆素的合成文獻介紹 187 4-1-3 苯并呋喃的介紹 190 4-1-4 苯并呋喃的合成文獻介紹 191 4-2. 研究動機 194 4-3. 實驗結果與討論 198 4-3-1 兩性離子起始物的製備 198 4-3-2 兩性離子機制 200 4-3-3 合成呋喃[3,2-c]香豆素的最佳化條件篩選 200 4-4-4 呋喃[3,2-c]香豆素的合成 201 4-4-5 呋喃[3,2-c]香豆素與苯并呋喃化合物的選擇性合成策略機制探討 202 4-4-6 合成呋喃[3,2-c]香豆素的反應機制 206 4-4-7 苯并呋喃的最佳化溫度、當量、醯氯試劑的條件篩選 207 4-4-8 苯并呋喃的合成 210 4-4-9 合成苯并呋喃反應機制 211 4-4-10 呋喃[3,2-c]喹啉的合成 211 4-4-11 合成 3 號位喹啉取代的苯并呋喃 213 4-4-12 呋喃[3,2-c]吡喃 214 4-4-13 呋喃[3,2-c]吡喃 216 4-4-14 合成 3 號位吡喃取代的苯并呋喃 217 4-5. 結論 219 4-6. 實驗部分 220 4-6-1 實驗步驟 221 4-6-2 起始物實驗數據 221 4-6-3 產物實驗數據 234 4-6-4 機制中間體實驗數據 256 4-7. 參考文獻 259 附錄一 1H-NMR、13C-NMR光譜圖 261 附錄二 HPLC 層析圖 679 附錄三 X-ray 單晶繞射結構解析數據 730

    1-5. 參考文獻
    [1] Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
    [2] For selected reviews on the generation of chiral quaternary stereocenters employing cascade/domino strategies, see: a) Vetica, F.; de Figueiredo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139; b) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237; c) Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Angew. Chem. Int. Ed. 2016, 55, 4156; d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem. Int. Ed. 2006, 45, 7134.
    [3] a) Tan, B.; Candeias, N. R.; Barbas III C. F. Nat. Chem. 2011, 3, 473; b) Sun, Q.-S.; Lin, H.; Sun, X.; Sun, X.-W. Tetrahedron Lett. 2016, 57, 5673.
    [4] a) Barnes-Seeman, D.; Corey, E. J. Org. Lett. 1999, 1, 1503; b) Nicolaou, K. C.; Simonsen, K. B.; Vassilikogiannakis, G.; Baran, P. S.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. Angew. Chem. Int. Ed. 1999, 38, 3555; c) Nicolaou, K. C.; Vassilikogiannakis, G.; Simonsen, K. B.; Baran, P. S.; Zhong, Y.-L.; Vidali, V. P.; Pitsinos, E. N.; Couladouros, E. A. J. Am. Chem. Soc. 2000, 122, 3071; d) Elliott, G. I.; Velcicky, J.; Ishikawa, H.; Li, Y. K.; Boger, D. L. Angew. Chem. Int. Ed. 2006, 45, 620.
    [5] Shibata, T.; Tahara, Y.-K.; Tamura, K. & Endo, K. J. Am. Chem. Soc. 2008, 130, 3451.
    [6] Rendler, S. & MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027.
    [7] Watson, M. P. & Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 12594.
    [8] Garcı’a-Fortanet, J.; Kessler, F. & Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 6676.
    [9] Sidera, M.; Roth, P. M. C.; Maksymowicz, R. M. & Fletcher, S. P. Angew. Chem. Int. Ed 2013, 52, 7995.
    [10] Mendoza, A.; Ishihara, Y. & Baran, P. S. Nature Chem. 2012, 4, 21.
    [11] Trost, B. M.; Malhotra, S.; Chan, W. H. J. Am. Chem. Soc. 2011, 133, 7328.
    [12] Zhang, H.; Hong, L.; Kang, H.; Wang, Rui. J. Am. Chem. Soc. 2013, 135, 14098.
    [13] Kleinbeck, F.; Toste, F. D., J. Am. Chem. Soc. 2009, 131, 9178.
    [14] Wagner, G., J. Russ. Phys. Chem. Soc. 1899, 31, 690.
    [15] Souillart, L.; Parker, E.; Cramer, N. Angew. Chem. Int. Ed. 2014, 55, 3001.
    [16] Snyder, S. A. & Corey, E. J. J. Am. Chem. Soc. 2006, 128, 740.
    [17] Trost, B. M.; Bringley, D. A.; Zhang, T. & Cramer, N. J. Am. Chem. Soc. 2013, 135, 16720.
    [18] Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.
    [19] Li, Tian; Xu, G. Q.; Li, T. H.; Liang, T. M.; Xu, P. F. Chem. Commun. 2014, 50, 2428.
    [20] Kowalczyk, D.; Albrecht, L. J. Org. Chem., 2016, 81, 6800.
    [21] Chang, G. H.; Wang, C. Y.; Reddy, G. M.; Tsai, Y. L.; Lin, W. J. Org. Chem. 2016, 81,
    10071.
    [22] Zhang, L. J.; Wang, Y.; Hu, X. Q.; Xu, P. F. Chem. Asian J. 2016, 11, 834.

    2-7. 參考文獻
    [1] Millemaggi, A.; Taylor, R. J. K. Eur. J. Org. Chem. 2010, 2010, 4527.
    [2] Lee, J. H.; Lee, S.; Yu, J.; Kim, J. N. Tetrahedron Lett. 2014, 55, 2450.
    [3] Liu, Y.; Yang, Y.; Huang, Y.; Xu, X.-H.; Qing, F.-L. Synlett 2015, 26, 67.
    [4] Ranieri, B.; Sartori, A.; Curti, C.; Battistini, L.; Rassu, G.; Pelosi, G.; Casiraghi, G.; Zanardi, F. Org. Lett. 2014, 16, 932.
    [5] Han, J. L.; Chang, C. H. Chem. Commun. 2016, 52, 2322.
    [6] Feng, J.; Li, X.; Cheng, J.-P. Chem. Commun. 2015, 51, 14342.
    [7] For a couple of brilliant examples where similar ylides were generated in situ by isatin-derived MBH carbonates and used in subsequent [2+1] and [3+2] annulations; see: (a) Wang, K.-K.; Wang, P.; Ouyang, Q.; Du, W.; Chen, Y.-C. Chem. Commun. 2016, 52, 11104. (b) Zhan, G.; Shi, M.-L.; He, Q.; Lin, W.-J.; Ouyang, Q.; Du, W.; Chen, Y.-C. Angew. Chem. Int. Ed. 2016, 55, 2147.
    [8] Lingam, K. A. P.; Shanmugam, P.; Selvakumar, K. Synlett 2012, 23, 278.
    [9] Curti, C.; Rassu, G.; Zambrano, V.; Pinna, L.; Pelosi, G.; Sartori, A.; Battistini, L.; Zanardi, F.; Casiraghi, G., Angew. Chem. Int. Ed., 2012, 51, 6200.
    [10] Zhong, Y.; Ma, S.; Xu, Z.; Chang, M.; Wang, R. RSC Adv. 2014, 4, 49930.
    [11] Di Iorio, N.; Righi, P.; Ranieri, S.; Mazzanti, A.; Margutta, R. G.; Bencivenni, G. J. Org. Chem. 2015, 80, 7158.
    [12] Das, U.; Chen, Y. R.; Tsai, Y. L.; Lin, W., Chem. Eur. J., 2013, 19, 7713.
    [13] Chen, Y. R.; Das, U.; Liu, M. H.; Lin, W., J. Org. Chem., 2015, 80, 1985.
    [14] Mohlmann, L.; Chang, G. H.; Reddy, G. M.; Lee, G. J.; Lin, W. Org. Lett., 2016, 18, 688.
    [15] Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304.

    3-6. 參考文獻
    [1] (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. RSC Advances 2015, 5, 15233. (b) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
    [2] Krause, W.; Kühne, G.; Sauerbrey, N. Eur. J. Clin. Pharmacol, 1990, 38, 71.
    [3] Kalir, A.; Edery, H.; Pelah, Z.; Balderman, D.; Porath, G. J. Med. Chem. 1969, 12,
    473.
    [4] Ramireddy, N.; Zhao, J. C. G. Tetrahedron Lett. 2014, 55, 706.
    [5] Shepherd, N. E.; Tanabe, H.; Xu, Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
    Soc. 2010, 132, 3666.
    [6] Huang, H.; Jin, Z.; Zhu, K.; Liang, X.; Ye, J. Angew. Chem. Int. Ed. 2011, 50, 3232.
    [7] Gu, X.; Guo, T.; Dai, Y.; Franchino, A.; Fei, J.; Zou, C.; Dixon, D. J.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 10249.
    [8] Zhang, J.; Liu, X.; Ma, X.; Wang, R. Chem. Commun. 2013, 49, 3300.
    [9] Duan, Z.; Zhang, Z.; Qian, P.; Han, J.; Pan, Y. RSC Adv. 2013, 3, 10127.
    [10] Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-Q. Org.
    Lett. 2011, 13, 788.
    [11] Baussanne, I.; Chiaroni, A.; Husson, H. P.; Riche, C.; Royer, J. Tetrahedron Lett. 1994, 35, 3931.
    [12] Lin, S.; Kumagai, N.; Shibasaki, M. Chem. Eur. J. 2016, 22, 3296-3299.
    [13] Modranka, J.; Albrecht, A.; Jakubowski, R.; Krawczyk, H.; Różalski, M.;
    Krajewska, U.; Janecka, A.; Wyrębska, A.; Różalska, B.; Janecki, T. Biorg. Med. Chem. 2012, 20, 5017.
    [14] Roelens, F.; Huvaere, K.; Dhooge, W.; Van Cleemput, M.; Comhaire, F.; De Keukeleire, D. Eur. J. Med. Chem. 2005, 40, 1042.
    [15] Chen, Y.-R.; Das, U.; Liu, M.-H.; Lin, W. J. Org. Chem. 2015, 80, 1985.
    [16] Curti, C.; Sartori, A.; Battistini, L.; Rassu, G.; Burreddu, P.; Zanardi, F.; Casiraghi,
    G. J. Org. Chem. 2008, 73, 5446.
    [17] Jang, Y.-J.; Syu, S.-e.; Chen, Y.-J.; Yang, M.-C.; Lin, W. Org. Biomol. Chem.
    2012, 10, 843.
    [18] Wang, Y.; Yu, Z.-H.; Zheng, H.-F.; Shi, D.-Q. Org. Biomol. Chem. 2012, 10, 7739.
    [19] Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M. J.; Herrera-Morales, A.;
    Villamena, F. A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte,
    E. J. Med. Chem. 2013, 56, 6136.
    [20] Sairam, M.; Saidachary, G.; Raju, B. C. Tetrahedron Lett. 2015, 56, 1338.

    4-7. 參考文獻
    [1] ( a) Burke, M. D.; Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43, 46. (b) Horton, A. H.; Bourne, G. T. M.; Smythe, L. Chem. Rev. 2003, 103, 893. (c) Spandl, R. J.; Bender, A.; Spring, D. R. Org. Biomol. Chem. 2008, 6, 1149. (d) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80. (e) Collins, I.; Jones, A. M. Molecules 2014, 19, 17221. (f) Lenci, E.; Guarna, A.; Trabocchi, A. Molecules 2014, 19, 16506. (g) O' Connor, C. J.; Beckmann, H. S. G.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 4444. (h) H. Eckert. Molecules 2012, 17, 1074.
    [2] (a) Welsch, M. E.; Snyder, S. A.; Stockwel, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939. (c) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo, R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.; Kling ,P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988, 31, 2235. (d) Zhao, H.; Dietrich, J. Expert Opin. Drug Discov. 2015, 10, 781.
    [3] (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59. (b) Itoigawa, M.; Ito, C.; Tan, H. T.-W.; Kuchide, M.; Tokuda, H.; Nishino, H.; Furukawa, H. Cancer Lett. 2001, 169, 15. (c) Yamaguchi, T.; Fukuda, T.; Ishibashi, F.; Iwao, M. Tetrahedron Lett. 2006, 47, 3755. (d) Yamamoto, Y.; Kurazono, M. Bioorg. Med. Chem. Lett. 2007, 17, 1626. (e) Kayser, O.; Kolodziej, H. Planta Med. 1997, 63, 508. (f) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. L.; Tseng, T. H. Cancer Lett. 2002, 183, 163. (g) Hamulakova, S.; Kožurková, M.; Kuca, K. Curr. Org. Chem. 2017, 21, 602. (h) Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Chem. Biol. Drug Des. 2016, 87, 21.
    [4] ( a) Lin, W.; Huang, J.; Liao, X.; Yuan, Z.; Feng, S.; Xie, Y.; Ma, W. Pharmacol. Res. 2016, 111, 849. (b) Wang, X.; Bastow, K. F.; Don, M. J.; Lin, Y. L.; Wu,T. S.; Lee, K, H.; J. Med. Chem. 2006, 49, 5631. (c) Dong, Y.; Shi, Q.; Goto, K. N.; Wu, P. C.; Bastow, K. F.; Natschke, S. L. M.; Lee, K. H. Bioorg. Med. Chem. Lett. 2009, 19, 6289. (d) Sashidhara, K. V.; Rosaiah, J. N.; Kumar, M.; Gara, R. K.; Nayak, L. V.; Srivastava, K.; Bid, H. K.; Konwar, R. Bioorg. Med. Chem. Lett. 2010, 20, 7127.
    [5] (a) Khan, A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg. Med. Chem. Lett. 2005, 15, 3584. (b) Chougala, B. M.; Shastri, S. L.; Holiyachi, M.; Shastri, L. A.; More, S. S.; Ramesh, K. V. Med. Chem. Res. 2015, 24, 4128.
    [6] (a) Teague, S. J.; Davis, A. M.; Leeson, P. D.; Oprea, T.; Angew. Chem. Int. Ed. 1999, 38, 3743. (b)
    Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123. (c) Schreiber, S. L. Science 2000, 287, 1964. (d) Liu, R.; Li, X.; Lam, K. S.; Curr. Opin. Chem. Biol. 2017, 38, 117.
    [7] Chu, X.; Tang, Z.; Ma, J.; He, L.; Feng, L.; Ma, C. Tetrahedron 2018, 74, 970.
    [8] A. Y. Dubovtsev, P. S. Silaichev, M. A. Nazarov, M. V. Dmitriev, A. N. Maslivets, M. Rubin, RSC
    Advances 2016, 6, 84730.
    [9] C. Uchiyama, Y. Miyadera, Y. Hayashi, F. Yakushiji ChemistrySelect. 2017, 2, 3794.
    [10] A. R. Kaneria, R. R. Giri, V. G. Bhila, H. J. Prajapati, D. I. Brahmbhatt, Arab. J. Chem. 2017, 10,
    S1100.
    [11] X. Chu, Z. Tang, J. Ma, L. He, L. Feng, C. Ma, Tetrahedron 2018, 74, 970.
    [12] K. Chand, Rajeshwari, A. Hiremathad, M. Singh, M. A. Santos, R. S. Keri, Pharmacol. Rep. 2017,
    69, 281.
    [13] A. A. Abu-Hashem, H. A. R. Hussein, A. S. Aly, M. A. Gouda, Synth. Commun. 2014, 44, 2285.
    [14] Syu, S.-E.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett. 2011, 13, 2970.
    [15] Lee, Y.-T.; Jang, Y.-J.; Syu, S.-E.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135.
    [16] Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem.
    2013, 11, 5156.
    [17] Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W. Org. Lett. 2012, 14, 1906.
    [18] Mandal, S.; Dwari, S.; Jana, C. K. J. Org. Chem. 2018, 83, 8874.

    下載圖示
    QR CODE