簡易檢索 / 詳目顯示

研究生: 陸一麟
LU, YI-LIN
論文名稱: GAS7基因於肺癌之分子變異及臨床相關性研究
Molecular Alteration Analysis of GAS7 Gene and Its Clinical Significance in Lung Cancer
指導教授: 王憶卿
Wang, Yi-Ching
李桂楨
Lee, Guey-Jen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 肺癌抑癌基因生長抑制基因
英文關鍵詞: lung cancer, tumor supressor gene, GAS7 gene
論文種類: 學術論文
相關次數: 點閱:180下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1982年起,癌症即為台灣地區十大死亡原因之第一位,其中肺癌不論在女性或男性都高居癌症死亡率的首位,儘管目前醫學已相當進步,但對於分子致癌機制仍未完全釐清。目前所知,癌症形成的原因,是由於多重基因發生變異所造成,其中大家所熟知和癌症有關的為抑癌基因 (tumor suppressor gene) 及致癌基因 (oncogene)。因此,抑癌基因變異的研究有助於了解癌症形成的機制。 研究目的:Growth arrest-specific 7 (GAS7) 這個蛋白質為GAS這個基因家族的其中一個成員,主要功能可能與調控細胞週期有關;前人研究報導顯示,GAS7可能在細胞中扮演一抑癌基因的角色。因此,本研究目的在探討GAS7基因在台灣地區非小細胞肺癌 (non-small cell lung cancer) 病人細胞中之變異情形:利用免疫組織化學染色法,觀察病人組織切片中GAS7蛋白表現情形,再以反轉錄—聚合酵素鏈反應分析組織細胞中mRNA轉錄是否異常,續以甲基化為基礎的定序反應以及微衛星基因座鑑定法分別偵測GAS7基因的促進子過度甲基化頻率和基因座缺失頻率。 結果: 本研究以免疫組織化學染色法發現75位NSCLC病人中GAS7蛋白低表達頻率為57.3% (43/75),以31位病人之組織進行西方轉漬法發現三種主要的蛋白形式,分別依分子量大至小為GAS7C、7B和7A,其GAS7C蛋白低表現之比例為48.4% (15/31),GAS7B蛋白低表現之比例為40.7% (11/27),而GAS7A蛋白幾乎不表現;GAS7 mRNA isoform: GAS7C和GAS7B低表達頻率分別為20.9% (19/91)和32.6% (30/92),而GAS7C和7B啟動子甲基化頻率分別為16.7% (6/36) 和65.6% (21/32)。GAS7基因座缺失的頻率在位於基因上、下游兩微衛星序列取聯集後為20.7% (18/87)。GAS7蛋白質/mRNA、GAS7C和7B之mRNA/啟動子甲基化的數據彼此間都呈現統計上的顯著相關性 (P<0.05)。利用西方轉漬膠片中相對於GAS7C分子量之蛋白進行膠體內水解、trypsin反應及質譜分析,本研究證實其為GAS7C蛋白。同時,我們藉由不同肺細胞株一系列的基因及蛋白質實驗,我們發現GAS7蛋白不同isoforms如GAS7C和7B,表達的量與細胞內的位置也都不同。 結論:本研究證實GAS7基因在台灣地區肺癌形成過程中扮演一個類似抑癌基因的角色,其中GAS7C為主要的變異蛋白,其變異主要機制為啟動子過度甲基化及基因座缺失,而 GAS7C 蛋白則可以在生長較為緩慢之正常肺細胞表現,此研究也是首篇證實GAS7C isoform可以在人類細胞中表現之論文。

    壹、中文摘要 …………………………………………………… 1 貳、英文摘要 …………………………………………………… 3 叁、文獻總論 …………………………………………………… 5 一、引言 ………………………………………………………… 5 (一) 研究臺灣肺癌的重要性……………………………… 5 (二) 研究GAS7基因的重要性 …………………………… 6 二、研究背景 …………………………………………………… 8 (一) GAS7基因發現過程…………………………………… 8 (二) GAS7基因之結構與功能……………………………… 11 (三) GAS7基因在癌症之變異情形………………………… 12 肆、研究目標……………………………………………………… 15 伍、方法總論……………………………………………………… 16 一、研究材料 …………………………………………………… 16 1. 檢體來源及病歷資料…………………………………… 16 2. 肺癌細胞株 ……………………………………………… 16 二、GAS7蛋白在病人檢體中的表現分析………………………… 16 (一) 西方轉漬法分析 (Western blotting analysis) 1. 蛋白質萃取……………………………………………… 16 2. 西方轉漬法……………………………………………… 17 3. 西方轉漬法之判讀標準………………………………… 18 4. 膠體內水解……………………………………………… 18 5. 質譜分析蛋白質身份…………………………………… 19 (二) 免疫組織染色分析 (Immunohistochemistry assay, IHC) 1. 組織切片染色…………………………………………… 20 2. 染色切片之判讀標準…………………………………… 20 三、GAS7基因mRNA在病人檢體中的表現分析…………………… 21 1. mRNA萃取………………………………………………………… 21 2. 反轉錄-聚合酵素連鎖反應 (Reverse-transcriptase polymerase chain reaction, RT-PCR)21 3. 判讀標準………………………………………………………… 22 四、GAS7基因在病人檢體中的啟動子過度甲基化分析…………… 23 1. DNA萃取…………………………………………………………… 23 2. Bisulfite-sequencing PCR, BSP assay………………… 23 3. 判讀標準…………………………………………………………… 24 五、GAS7基因在病人檢體中的LOH分析……………………………… 25 1. 微衛星序列 (microsatellite markers)…………………… 25 2. LOH分析……………………………………………………………… 25 六、GAS7基因/蛋白在肺細胞株內的表現情形……………………… 26 (一) 細胞培養……………………………………………………… 26 (二) 肺細胞株GAS7基因/蛋白的表現…………………………… 26 1. 細胞株蛋白質的抽取、定量及分析………………………… 26 2. 細胞株mRNA的抽取、定量及分析…………………………… 27 (三) 細胞免疫染色 (Immunocytochemical analysis, ICC) 27 七、統計分析…………………………………………………………… 27 陸、結果…………………………………………………………………… 29 一、探討肺細胞株GAS7基因mRNA/蛋白的表現情形…………………… 29 (一) GAS7基因mRNA/蛋白在各種不同肺細胞株內的表現情形… 29 (二) GAS7C表達的確認…………………………………………… 30 (三) GAS7蛋白在肺細胞株IMR90及A549分佈的情形………… 30 二、探討臺灣地區肺癌病人GAS7基因/蛋白之變異情形…………… 31 (一) GAS7蛋白表達情形與病歷資料相關性…………………… 31 (二) GAS7 mRNA表達情形與病歷資料相關性………………… 32 (三) GAS7基因啟動子過度甲基化情形與病歷資料相關性…… 32 (四) GAS7基因的異質性喪失分析……………………………… 33 (五) GAS7 mRNA、蛋白不表達與啟動子甲基化間之相關性… 33 柒、討論……………………………………………………………… 35 捌、附表……………………………………………………………… 41 玖、附圖……………………………………………………………… 49 拾、參考文獻………………………………………………………… 65

    1. Department of Health, The executive Yuan, Republic of China. General Health Statistics, 2008. In: Health and Vital Statistics, Republic of China. R. O. C. Press, Taipei, http://www.doh.gov.tw/statistic/index.htm
    2. Lee CS Cooper WA. Asbestos exposure and lung cancer. Pathology, 36:513-514, 2004.
    3. De Vuyst P, Dumortier P, Jacobovitz D, Emri S, Coplu L, Baris YI. Environmental asbestosis complicated by lung cancer. Chest, 105:1593-1595, 1994.
    4. Samet JM. Environmental causes of lung cancer: what do we know in 2003? Chest, 125:80S-83S, 2004.
    5. Sun JL, He XS, Yu YH, Chen ZC. Expression and structure of BNIP3L in lung cancer. Ai Zheng, 23:8-14, 2004.
    6. Sasaki M, Sugio K, Kuwabara Y, Koga H, Nakagawa M, Chen T, Kaneko K, Hayashi K, Shioyama Y, Sakai S, Honda H. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med, 17:189-196, 2003.
    7. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, Tornielli S, Sard L, Huebner K, Pierotti MA, Croce CM, Pilotti S. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res, 58:5032-5037, 1998.
    8. Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chen CY. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest, 111:887-895, 2003.
    9. Wang YC, Chen CY, Chen SK, Cherng SH, Ho WL, Lee H. High frequency of deletion mutations in p53 gene from squamous-cell lung cancer patients in Taiwan. Cancer Res, 58:328-333, 1998.
    10. Chen JT, Chen YC, Chen CY, Wang YC. Loss of p16 and/or pRb protein expression in lung cancer: an immunohistochemical and prognostic study. Lung Cancer, 31:163-170, 2001.
    11. Chen JT, Chen YC, Wang YC, Chen CY, Wang YC. Alterations of the p16ink4a gene in resected non-small cell lung tumors and exfoliated cells within sputum. Int J Cancer, 98:724-731, 2002.
    12. Wang YC, Lee HS, Chen SK, Yang SC, Chen CY. Analysis of K-ras gene mutations in lung carcinomas in Taiwan—Correlation with histological subtype and clinical outcome. J Cancer Res Clin Oncol, 124:517-522, 1998.
    13. Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chang GC, Chen CY. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest, 111: 887-895, 2003.
    14. Tseng RC, Chang JW, Hsien FJ, Chang YH, Hsiao CF, Chen JT, Chen CY, Jou YS, Wang YC. Genome-wide loss of heterozygosity and its clinical associations in non-small cell lung cancer. Int J Cancer, 117:241-247, 2005.
    15. Chao CC, Chang PY, Lu HH. Human Gas7 Isoforms Homologous to Mouse Transcripts Differentially Induce Neurite Outgrowth. J Neurosci Res, 81:153-162, 2005.
    16. Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell, 54:787–793, 1988.
    17. Manfioletti G, Ruaro ME, Del Sal G, Philipson L, Schneider C. A growth arrest-specific (gas) gene codes for a membrane protein. Mol Cell Biol, 10:2924–2930, 1990.
    18. Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV, Suter U. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet, 11:274–280, 1995.
    19. Zoidl G, Blass-Kampmann S, D’Urso D, Schmalenbach C, Muller HW. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth. EMBO J, 14:1122–1128, 1995.
    20. Li R, Chen J, Hammonds G, Phillips H, Armanini M, Wood P, Bunge R, Godowski PJ, Sliwkowski MX, Mather JP. Identification of Gas6 as a growth factor for human Schwann cells. J Neurosci, 16:2012–2019, 1996.
    21. Ju YT, Chang AC, She BR, Tsaur ML, Hwang HM, Chao CC, Cohen SN, Lin-Chao S. gas7: A gene expressed preferentially in growth-arrested fibroblasts and terminally differentiated Purkinje neurons affects neurite formation. Proc Natl Acad Sci USA, 95:11423–11428, 1998.
    22. Chao CC, Su LJ, Sun NK, Ju YT, Lih JC, Lin-Chao S. Involvement of Gas7 in nerve growth factor-independent and dependent cell processes in PC12 cells. J Neurosci Res, 74:248–254, 2003.
    23. Lih CJ, Cohen SN, Wang C, Lin-Chao S. The platelet-derived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene. Proc Natl Acad Sci USA, 93:4617–4622, 1996.
    24. Fabbretti E, Edomi P, Brancolini C, Schneider C. Apoptotic phenotype induced by overexpression of wild-type gas3/PMP22: its relation to the demyelinating peripheral neuropathy CMT1A. Genes Dev, 9:1846–1856, 1995.
    25. Brancolini C, Bottega S, Schneider C. Gas2, a growth arrest specific protein, is a component of the microfilament network system. J Cell Biol, 117:1251–1261, 1992.
    26. Stebel M, Vatta P, Ruaro ME, Del Sal G, Parton RG, Schneider C. The growth suppressing gas1 product is a GPI-linked protein. FEBS Lett, 481:152–158, 2000.
    27. Del Sal G, Ruaro ME, Philipson L, Schneider C. The growth arrest-specific gene, gas1, is involved in growth suppression. Cell, 70:595–607, 1992.
    28. Mellstro¨m B, Cena V, Lamas M, Perales C, Gonzalez C, Naranjo JR. Gas1 is induced during and participates in excitotoxic neuronal death. Mol. Cell Neurosci, 19:417–429, 2002.
    29. Zamorano A, Lamas M, Vergara P, Naranjo JR, Segovia J. Transcriptionally mediated gene targeting of gas1 to glioma cells elicits growth arrest and apoptosis. J. Neurosci. Res, 71:256–263, 2003.
    30. Zamorano A, Mellstro¨m B, Vergara P, Naranjo JR, Segovia J. Glial-specific retrovirally mediated gas1 gene expression induces glioma cell apoptosis and inhibits tumor growth in vivo. Neurobiol. Dis, 15:483–491, 2004.
    31. Benitez JA, Arregui L, Vergara P, Segovia J. Targeted-simultaneous expression of Gas1 and p53 using a bicistronic adenoviral vector in gliomas. Cancer Gene Ther, 14:836–846, 2007.
    32. Evdokiou A, Cowled PA. Tumor-suppressive activity of the growth arrest-specific gene GAS1 in human tumor cell lines. Int. J. Cancer, 75:568–577, 1998.
    33. Brancolini C, Benedetti M, Schneider C. Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like protease. EMBO J, 14:5179-5190, 1995.
    34. Benetti R, Del Sal G, Monte M, Paroni G, Brancolini C, Schneider C. The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO J, 20:2702-2714, 2001.
    35. Snipes GJ, Suter U, Welcher AA, Shooter EM. Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J Cell Biol, 117:225–238, 1992.
    36. Joo IS, Ki CS, Joo SY, Huh K, Kim JW. A novel point mutation in PMP22 gene associated with a familial case of Charcot-Marie-Tooth disease type 1A with sensorineural deafness. Neuromuscul Disord, 14:325–328, 2004.
    37. Suter U, Snipes GJ, Schoener-Scott R, Welcher AA, Pareek S, Lupski JR, Murphy RA, Schooter EM, Patel PI. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters. J. Cell Biol, 269:25795-25808, 1994.
    38. Re FC, Manenti G, Borrello MG, Colombo MP, Fisher JH, Pierotti MA, Della Porta G, Multiple molecular alterations in mouse lung tumors. Mol Carcinog, 5:155–160, 1992.
    39. Brenner DG, Lin-Chao S, Cohen SN. Analysis of mammalian cell genetic regulation in situ by using retrovirus-derived ''portable exons'' carrying the Escherichia coli lacZ gene. Proc. Natl. Acad. Sci. USA, 86:5517-5521, 1989.
    40. Lih CJ, Wu SM, Lin-Chao S. Rapid identification and isolation of transcriptionally active regions from mouse genomes. Gene, 164:289-294, 1996.
    41. She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp. Cell Res, 273:34-44, 2002.
    42. Chang PY, Kuo JT, Lin-Chao S, Chao CC. Identification of rat Gas7 isoforms differentially expressed in brain and regulated following kainate-induced neuronal injury. J. Neurosci. Res, 79:788-797, 2005.
    43. Chang Y, Ueng SW, Lin-Chao S, Chao CC. Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells. Osteoarthritis Cartilage, 2008 Apr 30 [E-publication ahead].
    44. Tian L, Nelson DL, Stewart DM. Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. J Biol Chem, 275:7854–7861, 2000.
    45. Fujita H, Katoh H, Ishikawa Y, Mori K, Negishi M. Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching. J Biol Chem, 277:45428–45434, 2002.
    46. Ilsley JL, Sudol M, Winder SJ. The WW domain: linking cell signaling to the membrane cytoskeleton. Cell Signal, 14:183–189, 2002.
    47. Megonigal MD, Cheung NK, Rappaport EF, Nowell PC, Wilson RB, Jones DH, Addya K, Leonard DG, Kushner BH, Williams TM, Lange BJ, Felix CA. Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc. Natl. Acad. Sci. USA, 97:2814-2819, 2000.
    48. Ebinger M, Senf L, Wachowski O, Scheurlen W. Expression of GAS7 in childhood CNS tumors. Pediatr Blood Cancer, 46:325-328, 2006.
    49. Scheurlen WG, Schwabe GC, Seranski P, Joos S, Harbott J, Metzke S, Dohner H, Poustka A, Wilgenbus K, Haas OA. Mapping of the breakpoints on the short arm of chromosome 17 in neoplasms with an i(17q). Genes Chromosomes Cancer, 25:230–240, 1999.
    50. Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother, 28:53-62, 2005.

    QR CODE