簡易檢索 / 詳目顯示

研究生: 吳菁菁
Chin-Chin Wu
論文名稱: 半線性拋物型方程及其離散化問題之特殊解
Special Solutions of Some Semilinear Parabolic Equations and Their Discrete Analogue
指導教授: 郭忠勝
Guo, Jong-Shenq
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 84
中文關鍵詞: 旅行波殆核解
英文關鍵詞: traveling wave, dead-core
論文種類: 學術論文
相關次數: 點閱:199下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡,我們主要討論的是半線性拋物型方程及其相關離散化問題的特殊解。

    在第一個部分,我們討論的是一個微分方程系統,其中的非線性項具有雙穩定性質,且其介質具有離散性和週期性。我們研究的是其對應旅行波解的存在性、唯一性和穩定性。而這樣的一個問題是從一個具有週期性質的半線性拋物型方程問題,將其空間變數離散化而來。我們主要是利用比較原理、算子分析和造出上、下解來得到旅行波解的唯一性和穩定性;並將微分方程轉換成積分方程來得到存在性。

    在第二個部分,我們研究的是一個具有初值及邊界條件,且具有強吸收之非線性項的熱方程問題。我們已經知道在某個初始條件之下,這個解在有限時間會產生殆核解,而這個產生殆核解的速度會比一般所謂的自我相似解的速度還快。在一個符合動態原理的假設條件下,利用結合內部與外部展開式的方法,我們在形式上可以得到殆核解的速度。另外,在所對應的柯西問題上,我們造了特殊解使其具有特定的速度且滿足我們動態原理的假設。

    In this thesis, we study special solutions of some
    semilinear parabolic equations and their discrete analogue.

    In the first part, we study the existence, uniqueness, and stability of traveling waves for a system of ordinary differential equations with bistable nonlinearity in discrete periodic media. This system arises from a spatial discrete version of some semilinear parabolic equations with periodic nonlinearity. The main tools to derive the uniqueness and asymptotic stability are comparison principle, spectrum analysis of the linearized operator
    around a steady state, and the construction of suitable
    super/subsolutions. To derive the existence of traveling wave, we first convert the system to an integral equation.
    Then we establish the existence traveling wave for this system of ordinary differential equations.

    In the second part, we study the solution of initial
    boundary value problem for the heat equation with a strong absorption term. It is well-known that the solution develops a dead-core in finite time for a large class of initial data. It is also known that the exact dead-core rate is faster than the corresponding self-similar rate. By using the idea of matching, we formally derive the exact dead-core rates under a dynamical theory assumption. Moreover, we also construct some special solutions for
    the corresponding Cauchy problem satisfying this dynamical theory assumption. These solutions provide some examples with certain given polynomial rates.

    1 Introduction 1 1.1 Traveling Wave in Discrete Periodic Media ....... 1 1.2 Finite time Dead-core Rate ...................... 5 2 Traveling Waves in Discrete Periodic Media 8 2.1 Introduction .................................... 8 2.2 Preliminary ..................................... 8 2.3 Monotonicity .................................... 12 2.4 Uniqueness and Asymptotic Stability ............. 21 2.5 Existence ....................................... 29 3 Finite Time Dead-core Rate 42 3.1 Introduction .................................... 42 3.2 Steady States ................................... 43 3.3 Inner Expansion ................................. 45 3.4 Outer Expansion ................................. 48 3.5 Rate of Convergence ............................. 50 3.6 Construction of Some Special Solutions .......... 50 3.7 Proof of Proposition 3.6.3 ...................... 54 3.7.1 Short time ................................... 57 3.7.2 Long Time .................................... 68 4 References 78

    [1] N. Alikakos, P.W. Bates, Xinfu Chen, Periodic traveling waves and locating oscillating patterns in multidimensional domains, Trans. Amer. Math. Soc. (1999), 2777--2805.

    [2] D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in "Partial Differential Equations and Related Topics", 5--49, Lecture Notes in Mathematics 446, Springer, New York, 1975.

    [3] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978), 33--76.

    [4] P.W. Bates, Xinfu Chen, A. Chmaj, Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal. 35(2003), 520--546.

    [5] H. Berestycki, F. Hamel, Front propagation in periodic
    excitable media, Comm. Pure Appl. Math. 55 (2002), 949--1032.

    [6] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. I -- Periodic framework,
    J. Europ. Math. Soc. (to appear).

    [7] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: I -- Influence of periodic heterogeneous environment on species persistence, preprint.

    [8] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: II -- Biological invasions and pulsating travelling fronts}, preprint.

    [9] M. Bramson, Convergence of Solutions of the Kolmogorov Equation to Traveling Waves, Memoirs Amer. Math. Soc. 44, 1983.

    [10] Xinfu Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Advances in Differential Equations 2 (1997), 125--160.

    [11] Xinfu Chen, S.-C. Fu, J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal. 38 (2006), 233--258.

    [12] Xinfu Chen, J.-S. Guo, C.-C. Wu, Travelling waves in discrete periodic media for bistable dynamics, submitted.

    [13] Xinfu Chen, J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations 184 (2002), 549--569.

    [14] Xinfu Chen, J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann. 326 (2003), 123--146.

    [15] S.-N. Chow, J. Mallet-Paret, W. Shen, Stability and bifurcation of traveling wave solution in coupled map lattices, Dynam. Systems Appl. 4 (1995), 1--26.

    [16] S.N. Chow, J. Mallet-Paret, W. Shen, Travelling waves
    in lattice dynamical systems, J. Differential Equations 149 (1998), 249--291.

    [17] P.C. Fife, Mathematical aspects of reacting and
    diffusing systems, Lecture Notes in Biomathematics 28, Springer Verlag, 1979.

    [18] P.C. Fife, J.B. McLeod, The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Rational Mech. Anal. 65 (1977), 335--361.

    [19] P.C. Fife, J.B. McLeod, A phase plane discussion of convergence to traveling fronts for nonlinear diffusion, Arch. Rational Mech. Anal. 75 (1981), 281--314.

    [20] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937), 335--369.

    [21] M.I. Freidlin, Limit theorems for large deviations
    and reaction-diffusion equations, Ann. Probab. 13 (1985),
    639--675.

    [22] J. Gartner, M.I. Freidlin, On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl. 20 (1979), 1282--1286.

    [23] J.-S. Guo, F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann. 335 (2006), 489--525.

    [24] W. Hudson, B. Zinner, Existence of traveling waves for a generalized discrete Fisher's equation, Comm. Appl. Nonlinear Anal. 1 (1994), 23--46.

    [25] W. Hudson, B. Zinner, Existence of travelling waves
    for reaction-dissusion equations of Fisher type in periodic media, In: Boundary Value Problems for Functional Differential Equations, J. Henderson (ed.), World Scientific, 1995, pp. 187--199.

    [26] Y. Kametaka, On the nonlinear diffusion equation of
    Kolmogorov-Petrovskii-Piskunov type, Osaka J. Math. 13(1976), 11--66.

    [27] Ya.I. Kanel', On the stabilization of Cauchy problem for equations arising in the theory of combustion, Mat. Sbornik 59 (1962), 245--288.

    [28] Ya.I. Kanel', On the stabilization of solutions of
    the equations of the theory of combustion with initial data of compact support, Mat. Sbornik 65 (1964), 398--413.

    [29] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov,Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Universite d'Etat a Moscou, Ser. Int., Sect. A. 1 (1937), 1--25.

    [30] J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type, J. Dynam. Differential Equations 11 (1999), 1--47.

    [31] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations 11 (1999), 49--127.

    [32] H. Matano, Travelling Waves in Spatially Inhomogeneous Diffusive Media -- The Non-periodic Case}, preprint.

    [33] H.J.K. Moet, A note on the asymptotic behavior of solutions of the KPP equation, SIAM J. Math. Anal. 10 (1979), 728--732.

    [34] K.-I. Nakamura, Effective speed of traveling wavefronts in periodic inhomogeneous media, Proc. Workshop "Nonlinear Partial Differential Equations
    and Related Topics", Joint Research Center for Science and
    Technology of Ryukoku University, 1999, pp. 53--60.

    [35] D.H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math. 22 (1976), 312--355.

    [36] W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: I. Stability and uniqueness, J. Differential Equations 159(1999), 1--54.

    [37] W. Shen, Travelling waves in time almost periodic structures governed by bistable nonlinearities: II. Existence, J. Differential Equations 159 (1999), 55--101.

    [38] N. Shigesada, K. Kawasaki, Biological invasions: theory and practice, Oxford Series in Ecology and Evolution, Oxford, Oxford University Press, 1997.

    [39] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Popul. Biology 30 (1986), 143--160.

    [40] B. Shorrocks, I.R. Swingland, Living in a Patch Environment, Oxford University Press, New York, 1990.

    [41] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ. 18 (1978), 453--508.

    [42] H.F. Weinberger, Long-time behavior of a class of
    biological models, SIAM J. Math. Anal. 13 (1982), 353--396.

    [43] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol. 45 (2002), 511--548.

    [44] J. Wu, X. Zou, Asymptotic and periodic boundary values problems of mixed PDEs and wave solutions of lattice differential equations, J. Differential Equations 135(1997), 315--357.

    [45] X. Xin, Existence and stability of travelling waves
    in periodic media governed by a bistable nonlinearity, J. Dynam. Differential Equations 3 (1991), 541--573.

    [46] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rational Mech. Anal. 121
    (1992), 205--233.

    [47] X. Xin, Existence and nonexistence of traveling waves
    and reaction-diffusion front propagation in periodic media,
    J. Stat. Physics 73 (1993), 893--925.

    [48] J.X. Xin, Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media, Arch. Rational Mech. Anal. 128 (1994), 75--103.

    [49] J. Xin, Front propagation in heterogeneous media, SIAM Review 42 (2000), 161--230.

    [50] B. Zinner, Stability of traveling wavefronts for the discrete Nagumo equations, SIAM J. Math. Anal. 22 (1991), 1016--1020.

    [51] B. Zinner, Existence of traveling wavefront solutions
    for the discrete Nagumo equation, J. Differential Equations 96 (1992), 1--27.

    [52] B. Zinner, G. Harris, W. Hudson, Traveling wavefronts
    for the discrete Fisher's equation, J. Differential Equations 105 (1993), 46--62.

    [53] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1972.

    [54] C. Bandle, I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems, Trans. Amer. Math. Soc. 286 (1984), 275--293.

    [55] J.W. Dold, V.A. Galaktionov, A.A. Lacey, J.L. Vazquez,
    Rate of approach to a singular steady state in quasilinear
    reaction-diffusion equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 663--687.

    [56] R. Ferreira, A. de Pablo, F. Quiros, J.D. Rossi, Superfast quenching, J. Differential Equations 199 (2004), 189--209.

    [57] M. Fila, J. Hulshof, A note on the quenching rate,
    Proc. Amer. Math. Soc. 112 (1991), 473-477.

    [58] S. Filippas, M.A. Herrero, J.J.L. Velazquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, Proc. R. Soc. Lond. A 456 (2000), 2957--2982.

    [59] A. Friedman, M.A. Herrero, Extinction properties of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 124 (1987), 530--546.

    [60] A. Friedman, J.B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425--447.

    [61] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297--319.

    [62] J.-S. Guo, On the quenching behavior of the solution of
    a semilinear parabolic equation, J. Math. Anal. Appl. 151 (1990), 58-79.

    [63] J.-S. Guo, On the quenching rate estimate, Quarterly Appl. Math. 49 (1991), 747-752.

    [64] J.-S. Guo, Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up, Math. Ann. 331 (2005), 651--667.

    [65] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, 1981.

    [66] M.A. Herrero, J.J.L. Velazquez, Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption, J. Math. Anal. Appl. 170 (1992), 353--381.

    [67] M.A. Herrero, J.J.L. Velazquez, Explosion de solutions des equations paraboliques semilineaires supercritiques,
    C. R. Acad. Sci. Paris 319 (1994), 141--145.

    [68] M.A. Herrero, J.J.L. Velazquez, A blow up result for semilinear heat equations in the supercritical case, preprint.

    [69] S. Kamin, Ph. Rosenau, Thermal waves in an absorbing and convecting medium, Physica D 8 (1983), 273--283.

    [70] H.A. Levine, Quenching and beyond: a survey of recent results, Nonlinear Mathematical Problems in Industry,
    GAKUTO International Series, Math. Sci. Appl., Vol. 2, 1993,
    pp. 501-512.

    [71] L.K. Martinson, The finite velocity of propagation of thermal perturbations in media with constant thermal conductivity, Zh. Vychisl. Mat. i Mat. Fiz. 16 (1976), 1233--1243.

    [72] N. Mizoguchi, Type-II blowup for a semilinear heat equation, Advances in Differential equation 9 (2004), 1279--1316.

    [73] L.A. Peletier, W.C. Troy, On nonexistence of similarity solutions, J. Math. Anal. Appl. 133 (1988), 57--67.

    [74] Ph. Souplet, J.L. Vazquez, Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem, Discrete Contin. Dyn. Syst. 14 (2006), 221--234.

    [75] I. Stakgold, Reaction-diffusion problems in chemical engineering, in "Nonlinear diffusion problems" (Montecatini Terme, 1985), Lecture Notes in Math., 1224, Springer, Berlin, 1986, pp. 119--152.

    [76] F.B. Weissler, An L^\infty blow-up estimate for a nonlinear heat equation, Comm. Pure Appl. Math. 38 (1985), 291--295.

    QR CODE