簡易檢索 / 詳目顯示

研究生: 黃文田
Wen-Tien Huang
論文名稱: 探討建模教學對八年級學生酸鹼概念發展與建模能力的影響
Investigating the Effectiveness of Model-based Teaching on Eighth Graders’ Conceptual Development and Modeling Ability in Acid and Base
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 176
中文關鍵詞: 模型與建模酸與鹼心智模式合作式建模教學
英文關鍵詞: model and modeling, acid and base, mental model, cooperative modeling teaching
論文種類: 學術論文
相關次數: 點閱:213下載:58
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選取國民中學教科書自然與生活科技第四冊『酸與鹼』單元為研究主題,依課程內容擷取『酸鹼的定義與通性』、『酸鹼濃度與pH值』和『酸鹼中和與鹽類』三個主題概念設計教學活動。分別進行『建模教學』、『建模合作教學』和『一般教學』三種不同教學模式,探討不同教學法對學生酸鹼概念與建模能力的影響,並進一步探討兩者間的相關性。
    本研究的研究對象為國中八年級三個班共88位學生,所使用的研究工具為研究者針對主題概念所研發的『酸鹼概念診斷測驗』與『建模能力分析試題』,據此工具以量化的形式來分析學生的酸鹼概念與建模能力。研究結果如下:
    一、兩種建模教學(實驗組)在教學後酸鹼概念的後測及延宕測表現,都顯著優於一
    般教學(控制組),在兩實驗組間的比較上,『建模合作組』在後測和延宕測的
    表現皆優於『建模教學組』。建模教學與建模合作教學在『酸鹼的定義與通
    性』和『酸鹼濃度與pH值』主題概念的學習,都能顯著優於一般教學。但在較
    為複雜的『酸鹼中和與鹽類』概念學習上,建模教學無法顯著優於一般教學,
    而建模合作教學依然能顯著優於一般教學。
    二、教學前三組學生在『酸鹼中和』心智模式皆以現象模式、直覺濃度模式與不一
    致的混合模式、競爭模式和散亂模式為主。教學後『一般教學組』達類科學模
    式的比例為25%,『建模教學組』的類科學模式比例為35.7%,『建模合作
    組』有34.7%的類科學模式,且有9.4%達科學模式。延宕測後『建模教學
    組』與『建模合作組』在類科學模式以上的比例稍增加,但『一般教學組』卻
    減少,顯示建模教學較一般教學能幫助學生建構出正確的科學心智模式。
    三、兩種建模教學(實驗組)在教學後建模能力的後測及延宕測表現,都顯著優於一
    般教學(控制組),在兩實驗組間的比較上,『建模合作組』後測的表現優於
    『建模教學組』。延宕測後『建模合作組』在三組間仍然保有最佳表現。建模教
    學在各個建模歷程的後測和延宕測表現上都優於一般教學,顯示建模教學較一
    般教學更能有效提升學生的建模能力。研究中亦發現,兩實驗組在前三個歷程
    的建模能力表現上差異不大,但在後二個建模歷程,『建模合作組』的表現明
    顯優於『建模教學組』。可見透過合作式的建模教學,對於學生高階認知與推
    論能力的培養具有較佳的成效。
    四、教學前三組中僅『建模合作組』的酸鹼概念與建模能力達顯著相關
    (p<.01),其餘兩組的相關性低。教學後三組均達顯著正相關(p<.001),
    顯見三種教學模式均能同時提升學生的酸鹼概念與建模能力。而建模教學比一
    般教學較能同時提升教學成效與學生的建模能力,且透過合作式學習,更能增
    進整體的成效。

    The topic of this research was chosen from “Acid and Base”, Science and Technology, Book Ⅳ in junior high school. It contained three subconcepts of “definition and generality of acid and base”, “concentration and pH value of acid and base”, and “neutralization and salts” to design the instruction. It conducted three different teaching models of “modeling teaching”, “cooperative modeling teaching”, and “general teaching” to investigate the effectiveness on students’ concepts of acid and base and modeling ability and further explored the correlation between them.
    The participants in this research included 88 8th graders from three classes. The research instruments included “diagnostic test of concepts of acid and base” and “analytic test of modeling ability” which were designed by researcher to analyze students’ concepts of acid and base and modeling ability quantitatively. The research results were mentioned as below:
    1. The performance of posttest and retention test in the
    concepts of acid and base of the two modeling teachings
    (experimental groups) were significantly superior to
    the general teaching (control group) after teaching.
    Compared with the two experimental groups, “cooperative
    modeling teaching group” was superior to “modeling
    teaching group” in both posttest and retention test. The
    modeling teaching group and the cooperative modeling
    teaching group were also significantly superior to the
    general teaching group in the subconcepts of “definition
    and generality of acid and base” and “concentration and
    pH value of acid and base”. However, in the learning of
    more complicated subconcept of “neutralization and
    salts”, the modeling teaching group was not able to be
    superior to the general teaching group, but the
    cooperative modeling teaching group still did.
    2. Before the teaching, students’ “mental model of
    neutralization ” in the three groups all came with
    phenomenon model, intuitive concentration model, mixed
    model, competitive model, and messy model. After the
    teaching, there were 25% students could reach to
    scientific-like model in the “general teaching group”,
    35.7% students in the “modeling teaching group”. There
    were 34.7% students could reach to scientific-like model
    and 9.4% students could reach to scientific model in the
    “cooperative modeling teaching group”. In the retention
    test, the “modeling teaching group” and the “cooperative
    modeling teaching group” both slightly increased the rate
    of scientific-like model, but the “general teaching
    group” decreased. It revealed that modeling teaching
    could help students constructing more correct scientific
    mental model than general teaching did.
    3. The performance of posttest and retention test in
    modeling ability of the two modeling teachings
    (experimental groups) were significantly superior to the
    general teaching (control group) after the teaching.
    Compared with the two experimental groups, the
    “cooperative modeling teaching group” was superior to the
    “modeling teaching group” in the posttest. The
    “cooperative modeling teaching group” still had the best
    performance among the three groups in the retention test.
    In every modeling process, modeling teachings were
    superior to general teaching in both posttest and
    retention test. It showed that modeling teachings could
    efficiently promote students’ modeling ability than
    general teaching. It also found that there was not
    significant difference on modeling ability between the
    two modeling teachings in the first three modeling
    processes, but the “cooperative modeling teaching group”
    was superior to the “modeling teaching group” in the last
    two modeling processes. As we can see that through the
    cooperative modeling teaching could promote students’
    high level cognition and deductive ability.
    4. Before the teaching, only the “cooperative modeling
    teaching group” had a significant and positive
    correlation (p<.01) between the concepts of acid and
    base and modeling ability. After the teaching, there were
    significant and positive correlations (p<.001) in the
    three groups. It showed that the three teachings could
    simultaneously promote students’ concepts of acid and
    base and modeling ability. Modeling teachings could
    simultaneously facilitate teaching effects and students’
    modeling ability than general teaching. Through the
    cooperative learning, it could enhance even more in the
    whole effects.

    第壹章 緒論..............................................1 第一節 研究背景與動機..................................1 第二節 研究目的與研究問題...............................3 第三節 名詞釋義.......................................4 第四節 研究範圍與限制..................................6 第貳章 文獻探討...........................................7 第一節 概念改變.......................................7 第二節 心智模式......................................17 第三節 模型與建模.....................................22 第四節 合作學習的基本概念..............................37 第五節 酸鹼概念研究...................................39 第参章 研究方法..........................................49 第一節 研究設計......................................49 第二節 研究對象......................................52 第三節 研究工具......................................53 第四節 研究流程......................................58 第五節 資料處理與分析.................................60 第肆章 研究結果與討論.....................................63 第一節 酸鹼概念學習成效分析............................63 第二節 酸鹼主題概念學習成效分析.........................67 第三節 酸鹼中和心智模式分析............................78 第四節 酸鹼建模能力分析...............................88 第五節 各建模歷程之建模能力分析.........................93 第六節 酸鹼概念和建模能力的相關性......................109 第伍章 結論與建議.......................................119 第一節 結論........................................119 第二節 建議........................................122 參考文獻............................................125 一、中文部分.....................................125 二、西文部分.....................................127 附錄一 酸、鹼、鹽概念圖...........................133 附錄二 酸鹼概念命題陳述...........................134 附錄三 建模教學組教學設計.........................135 附錄四 建模合作組教學設計.........................138 附錄五 一般教學組教學設計.........................141 附錄六 建模教學組與建模合作組課程學習單..............143 附錄七 一般教學組課程學習單........................156 附錄八 酸鹼概念診斷測驗...........................166 附錄九 酸鹼建模能力分析試題........................170 附錄十 酸鹼建模能力試題計分標準.....................175

    一、中文部分
    何佳燕(2002)。探討粒子概念對國二學生學習溫度與熱的學習成就與心智模式之影
    響(未出版之碩士論文)。國立臺灣師範大學,台北市。
    宋志雄(1992)。探究國三學生酸與鹼迷思概念並應用以發展教學診斷工具(未出版
    之碩士論文)。國立彰化師範大學,彰化市。
    李詩閔(2001)。以微量實驗裝置的教學活動探討學生對酸鹼概念的學習情況(未出
    版之碩士論文)。國立臺灣師範大學,台北市。
    周金城(2008)。探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,
    306,10–17。
    邱柏融(2009)。建模教學對國小五年級學生酸鹼心智模式改變之探究(未出版之碩
    士論文)。國立臺灣師範大學,台北市。
    邱美虹(2000)。概念改變的省思與啟示。科學教育學刊,8(1),1–34。
    邱美虹(2007)。建模能力分析指標的應用-以電化學為例。行政院國家科學委員會
    專題研究計畫成果報告,NSC 95-2511-S-003-024-MY2。
    邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2–9。
    邱美虹與林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教育學
    刊,10,2,109–134。
    邱美虹與劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,
    314,2–20。
    邱顯博(2002)。國二、國三學生的擴散作用概念與概念改變之研究(未出版之碩士
    論文)。國立臺灣師範大學,台北市。
    姚錦棟(2002)。我國中學生酸鹼鹽迷思概念和心智模式之研究(未出版之碩士論
    文)。國立臺灣師範大學,台北市。
    張志康(2009)。從概念改變理論探討建模教學對學生力學心智模式與建模能力之影
    響(未出版之博士論文)。國立臺灣師範大學,台北市。
    張志康與邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教
    育學刊,17,4,319–342。
    陳均伊、張惠博與郭重吉(2004)。光反射與折射的另有概念診斷工具之發展與研
    究。科學教育學刊,12(3),311–340。
    陳姍姍(1993 )。我國國三學生酸鹼概念之研究(未出版之碩士論文)。國立臺灣師
    範大學,台北市。
    陳婉茹(2004)。探討動態類比對於化學平衡概念學習之研究–八年級學生概念本體
    及心智模式之變化(未出版之碩士論文)。國立臺灣師範大學,台北市。
    陳瑞麟(2004)。科學理論版本的結構與發展。台北市:台灣大學。
    曹美惠(2008)。國中國文科實施合作學習之研究(未出版之碩士論文)。國立臺灣師
    範大學,台北市。
    黃政傑、林佩璇(1996)。合作學習。台北市:五南圖書。
    黃政傑、吳俊憲(2006)。合作學習發展與實現。台北市:五南圖書。
    楊鵬耀(2005)。探究電腦多媒體教學對於國三學生學習酸鹼概念與概念改變之歷程
    (未出版之碩士論文)。國立臺灣師範大學,台北市。
    簡妙娟(2003)。合作學習理論與教學應用。載於張新仁(主編),學習與教學新趨勢
    (403-463頁)。臺北市:心理出版社。

    二、西文部分
    Ainsworth, S. (2008). The educational value of multiple-
    representations when learning complex scientific
    concepts. In J. K. Gilbert, M. Reiner, & M. Nakhleh
    (Eds.), Visualization: Theory and practice in science
    education (pp. 191-208). Dordrecht, The Netherlands:
    Springer.
    Buckley, B. C. & Boulter, C. J. (2000). Investigating the
    Role of Representations and Expressed Models in Building
    Mental Models. In J. K. Gilbert & C.J. Boulter (Eds.),
    Developing Models in Science Education (pp.119-135.).
    Dordrecht, The Netherlands: Kluwer Academic
    Publishers.
    Chi, M. T. H. (1992). Conceptual change within and across
    ontological categories: Implications for learning and
    discovery in sciences. In R. Giere (Ed.), Cognitive
    models of science: Minnesota studies in the philosophy
    of science (pp.129-186). Minneapolis: University of
    Minnesota Press.
    Chi, M.T.H. (2005). Common sense conceptions of emergent
    processes: Why some misconceptions are robust. Journal
    of the Learning Sciences, 14: 161-199.
    Chi, M.T.H. (2008). Three types of conceptual change: Belief
    revision, mental model transformation, and categorical
    shift. In S. Vosniadou (Ed.), Handbook of research on
    conceptual change(pp. 61-82).Hillsdale, NJ: Erlbaum.
    Chi, M. T. H., & Hausmann, R. G. M. (2003). Do radical
    discoveries require ontological shifts? In L. Shavinina
    & R. Sternberg (Eds.) International Handbook on
    Innovation (Vol. 3, pp. 430–444). New York: Elsevier
    Science.
    Chi, M. T. H., & Roscoe, R. D. (2002). The processes and
    challenges of conceptual change. In M. Limon and L.
    Mason (Eds.), Reconsidering Conceptual Change: Issues in
    Theory and Practice. Kluwer Academic Publishers, The
    Netherlands, pp 3-27.
    Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From
    things to processes: A theory of conceptual change for
    learning science concepts, Learning and instruction, 4,
    27-43.
    Chiu, M. H. (2007b). Research And InstructioN-Based/Oriented
    Work (RAINBOW) for Conceptual Change in Science
    Learning. Paper present at the second NICE Symposium,
    July 30-31, Taipei, Taiwan.
    Chiu, M. H., & Lin, J. W. (2008). Research on learning and
    teaching of student’s conception in science. Science
    Education in the 21st Century. Editor: Ingrid V.
    Eriksson, pp. 291-316.
    Clement, J. J. (2000). Model based learning as a key
    research area for science education. International
    Journal of Science Education, 22(9), 1041-1053.
    diSessa, A. (1993). Towards an epistemology of physics.
    Cognition and instruction, 10(2 & 3), 105-225.
    Duit, R., & Treagust, D. (2003). Conceptual change: A
    powerful framework for improving science teaching and
    learning. International Journal of Science Education,
    25(6), 671-688.
    Gilbert, S. W. (1991). Model building and a definition of
    science. Journal of Research in Science Teaching, 28(1),
    73-79.
    Gilbert, J. K., Boulter, C., J., & Elmer, R. (2000).
    Positioning models in science education and in design
    and technology education. In J. K. Gilbert and C. J.
    Boulter (Eds.) Developing Models in Science Education
    (pp. 3-17). Dordrecht/Boston/London: Kluwer Academic
    Publishers.
    Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991).
    Understanding models and their use in science:
    Conceptions of middle and high school students and
    experts. Journal of Research in Science Teaching, 28(9),
    799-822.
    Halloun, I. A. (1996). Schematic modeling for meaningful
    learning of physics. Journal of Research in Science
    Teaching, 26(11), 1365-1378.
    Halloun, I. A. (2004). Modeling theory in science education.
    Dordrecht, The Netherlands: Kluwer Academic.
    Halloun, I. A. (2007). Mediated Modeling in Science
    Education. Science & Education, 16, 653-697.
    Harrison, A. G., & Treagust, D. F. (2000). A typology of
    school science models.International Journal of Science
    Education, 22(9), 1011-1026.
    Henze, I., van Driel, J. H., & Verloop, N. (2007). Science
    teachers’knowledge about teaching models and modelling
    in the context of a new syllabus on public understanding
    of science. Research in Science Education, 37, 99-122.
    Hestenes, D. (1995). Modeling software for learning and
    doing physics. In Bernardini, C., Tarsitani, C., &
    Vincentini, M. (Eds.). Thinking physics for teaching.
    25-66. New York: Plenum.
    Hilke, E. V. (1990). Cooperative learning. Bloomington, IN:
    Phi Delta Kappa Educational Foundation.
    Johnson, D. W. & Johnson, R. T. (1989) Cooperation and
    competition: Theory and Research. Edina, MN: Interaction
    Book Company.
    Johnson, D. W. & Johnson, R.T. (1994). Learning together and
    alone (4th ed.),Needham Heights, MA: Allyn and Bacon.
    Johnson-Laird P. N. (1994). Mental models, Deductive
    Reasoning, and the Brain. In M. S. Gazzaniga (Ed.), The
    Cognitive Neural Science (pp. 999-1008). Cambridge: The
    MIT. Press.
    Justi, R. S., & Gilbert, J. K. (2002a). Modelling,
    teachers’views on the nature of modeling, and
    implications for the education of modelers.
    International Journal of Science Education, 24(4), 369-
    387.
    Lin, J. W., & Chiu, M. H. (2007a). Exploring the
    Characteristics and Diverse sources of students’ Mental
    models of Acids and Bases. International Journal of
    Science Education, 29(6), 771-803.
    Lin, J. W., & Chiu, M. H. (2010). The Mismatch between
    Students’ Mental Models of Acids/Bases and their Sources
    and their Teacher’s Anticipations thereof. International
    Journal of Science Education, 32(12), 1617-1646.
    Nakhleh, M. B., & Krajcik, J. S. (1994). Influence on Levels
    of Information as Presented by Different Technologies on
    Students' Understanding of Acid, Base, and pH Concepts.
    International Journal of Science Education, 31(10),
    1077-1096.
    Nattiv, A. (1986). The effects of cooperative learning
    instruction strategies on achievement among six grade
    social studies students. University of California, Santa
    Barbara.
    Norman, D. A.(1983). Some observations on mental models. In
    D. Gentner and A. Stevens (Eds.), Mental Models (pp. 7-
    14). Hillsdale, NJ: Erlbaum.
    Oh, P. S., & Oh, S. J. (2011). What Teachers of Science Need
    to Know about Models: An overview. International Journal
    of Science Education, 33(8), 1109-1130.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W.
    A. (1982). Accommodation of a scientific conception:
    toward a theory of conceptual change. Science education,
    66(2), 211-227.
    Saari, H. & Viiri, F. (2003). A research-based teaching
    sequence for teaching the concept of modelling to
    seventh-grade students. International Journal of Science
    Education, 25(11), 1333-1352.
    Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L.,
    Ache´r, A., Fortus, D., Shwartz, Y., Hug, B., &
    Krajcik, J. (2009). Developing a Learning Progression
    for Scientific Modeling: Making Scientific Modeling
    Accessible and Meaningful for Learners. Journal of
    Research in Science Teaching, 46(6), 632-654.
    Slavin, R. E. (1979). Effects of biracial learning teams on
    cross-racial friendships. Journal of Educational
    Psychology, 71, 381-387.
    Slavin, R. E. (1995a). Cooperative learning: Theory,
    research, and practice (2nd ed.). Boston: Allyn & Bacon.
    Thagard, P. (1992). Conceptual revolutions. Princeton, NJ:
    Princeton University Press.
    Van Driel, J. H. & Verloop, N. (2002). Experienced
    teachers’knowledge of teaching and learning of models
    and modeling in science education. International Journal
    of Science Education, 24(12), 1255-1272.
    Vosniadou, S. (1994). Capturing and modeling the process of
    conceptual change. [special issue]. Learning and
    instruction, 4, 45-69.
    Vosniadou, S.(2002). On the nature of naïve physics. In M.
    Limon & L.Mason(Eds.), Reconsidering conceptual change.
    Issues in theory and practice. Netherlands: Kluwer
    Academic Publishers, 61-76.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the
    earth: A study of conceptual change in childhood.
    Cognitive Psychology, 24, 535-585.
    Vosniadou, S., & Ioannides, C. (1998). From Conceptual
    Development to Science Education: A Psychological Point
    of View. International Journal of Science Education,
    20(10), 1213-1230.

    下載圖示
    QR CODE