研究生: |
曾俊達 Zeng, Jun-Da |
---|---|
論文名稱: |
對於水平方向線性並聯機器手臂的工作空間分析與實作 Analysis the Working Space and Implementation for a Linear Horizontal Direction Delta Robotic Arms |
指導教授: |
陳美勇
Chen, Mei-Yung |
口試委員: |
張嘉文
Chang, Chia-Wen 莊鎮嘉 Chuang, Chen-Chia 練光祐 Lian, Kuang-Yow 陳美勇 Chen, Mei-Yung |
口試日期: | 2023/12/28 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | Delta 機械手臂 、正向運動學 、逆向運動學 、工作空間 、運動軌跡 |
英文關鍵詞: | Delta robot, Forward kinematics, Inverse kinematics, Working space, Motion trajectory |
DOI URL: | http://doi.org/10.6345/NTNU202400045 |
論文種類: | 學術論文 |
相關次數: | 點閱:202 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Delta機械手臂是並聯式機械手臂中的一種,在結構上可分為移動平台和固定底座,以及三個平行四邊形形狀,具有相同運動學結構的機械手臂,固定在一個固定底座上,依靠底座上裝設的馬達來驅動手臂上的連桿,對移動平台進行移動。大部分的Delta機械手臂是採用垂直方向,而本文中所展現的則是水平方向的Delta機械手臂,並介紹其特點以及針對Delta機械手臂的運動學、工作空間和與對運動軌跡進行分析,為水平方向Delta機機械手臂的應用提供參考。
運動學分析分為正向運動學和逆向運動學。逆向運動學的解可以通過機械臂的參數以及幾何的分析來求得。利用逆向運動學的計算結果以及參數代換的方法,可以獲得Delta機械手臂的正向運動學之解。 藉由正向運動學的計算結果,可以對Delta機械手臂的工作空間進行分析,並透過MATLAB模擬Delta機械手臂在3D空間中的工作空間。在運動軌跡方面,通過控制系統來操控機械手臂的運動,通過模擬與實驗對比,藉以優化Delta機械手臂的運動軌跡。
The Delta robotic arm is one of the parallel robotic arms. It can be divided into a mobile platform and a fixed base, and three parallelogram-shaped arms with the same kinematic structure. They are set on a fixed base and rely on the base for loading. A motor is provided to drive the link on the arm to move the mobile platform. Most Delta robotic arms adopt a vertical orientation, but this article shows a horizontal Delta robotic arm. It introduces its characteristics and analyzes the kinematics, workspace, and motion trajectory of the Delta robot. The horizontal orientation provides a reference for the application of the Delta machine robotic arm.
Kinematics analysis is divided into forward kinematics and inverse kinematics. The solution of inverse kinematics can be obtained through the analysis of the parameters and geometry of the manipulator. Using the calculation results of inverse kinematics and the method of parameter substitution, the solution to the forward kinematics of the Delta robotic arm can be obtained. Through the calculation results of forward kinematics, the working space of the Delta robotic arm can be analyzed, and the working space of the Delta robotic arm in 3D space can be simulated through MATLAB. In terms of motion trajectory, the control system is used to control the movement of the robotic arm, and the motion trajectory of the Delta robotic arm is optimized through simulation and experimental comparison.
[1] R. Zhao, L. Wu and Y. -H. Chen, “Robust Control for Nonlinear Delta Parallel Robot with Uncertainty: An Online Estimation Approach,” IEEE Access, vol. 8, Pages 97604-97617, 2020.
[2] Rey, L., Clavel, R. “The Delta Parallel Robot. In: Boër, C.R., Molinari-TosattiL, Smith, K.S. (eds) Parallel Kinematic Machines,” Advanced Manufacturing, Springer, London, 1999.
[3] Fomin, Alexey, Anton Antonov, Victor Glazunov, Yuri Rodionov, “Inverse and Forward Kinematic Analysis of a 6-DOF Parallel Manipulator Utilizing a Circular Guide,” Robotics 10, no. 1: 31, 2021.
[4] Huang MZ, “Design of a Planar Parallel Robot for Optimal Workspace and Dexterity,” International Journal of Advanced Robotic Systems, 2011.
[5] T. Huang, P.F. Wang, J.P. Mei, X.M. Zhao, D.G. Chetwynd, “Time Minimum Trajectory Planning of a 2-DOF Translational Parallel Robot for Pick-and-place Operations,” CIRP Annals, Volume 56, Issue 1, Pages 365-368, 2007.
[6] H. -J. Cha, J. -H. Woo, B. -J. Yi and C. Park, “Workspace analysis of the DELTA robot according to robot parameters and ball joints,” 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Pages 587-588, Jeju, Korea (South), 2013.
[7] L. Angel, J. Bermúdez and O. Muñoz, “Dynamic optimization and building of a parallel delta-type robot,” 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Pages 444-449, Shenzhen, China, 2013.
[8] H. Zhang, K. Zhang and J. Gao, “Dynamically Based Motor Parameters for Delta Robots Using the Specified Workspace,” 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Pages 814-818, Tokyo, Japan, 2019.
[9] P. Prempraneerach, “Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot,” 2014 International Computer Science and Engineering Conference (ICSEC), Pages 469-474, Khon Kaen, Thailand, 2014.
[10] M. Mahmoodi, M. G. Tabrizi and K. Alipour, “A new approach for Kinematics-based design of 3-RRR delta robots with a specified workspace,” 2015 AI & Robotics (IRANOPEN), Pages 1-6, Qazvin, Iran, 2015.
[11] P. Ataei, Z. Anvari and M. T. Masouleh, “Kinetostatic Performance and Collision-free Workspace Analysis of a 3-DOF Delta Parallel Robot,” 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), Pages 576-581, Tehran, Iran, 2017.
[12] C. Liu, G. -H. Cao and Y. -Y. Qu, “Workspace Analysis of Delta Robot Based on Forward Kinematics Solution,” 2019 3rd International Conference on Robotics and Automation Sciences (ICRAS), Pages 1-5,Wuhan, China, 2019.
[13] Tanio K. Tanev, “Kinematics of a hybrid (parallel–serial) robot manipulator,” Mechanism and Machine Theory, Volume 35, Issue 9, Pages 1183-1196, 2000.
[14] Ronen Ben-Horin, Moshe Shoham, Shlomo Djerassi, “Kinematics, dynamics and construction of a planarly actuated parallel robot,” Robotics and Computer-Integrated Manufacturing, Volume 14, Issue 2, Pages 163-172, 1998.
[15] Idumudi, V.S.P., Javed, A., “Kinematic Error Modeling of a Parallelogram Arm of the Delta Robot and Its Dimensional Optimization,” Advances in Industrial Machines and Mechanisms, Springer, Singapore, 2021.
[16] Marco Riboli, Matthieu Jaccard, Marco Silvestri, Alessandra Aimi, Cesare Malara, “Collision-free and smooth motion planning of dual-arm Cartesian robot based on B-spline representation,” Robotics and Autonomous Systems, Volume 170, 104534, 2023.