簡易檢索 / 詳目顯示

研究生: 楊芳怡
Fang-I Yang
論文名稱: MH+(M = Ni, Cu, Zn)和CH4, NH3, H2O等分子在氣相中反應以產生氫氣之理論計算與研究
Theoretical Study of H2 Formation in the Reaction of MH+(M = Ni, Cu,and Zn) with CH4, NH3,and H2O in the Gas Phase
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: DFT計算MH+
英文關鍵詞: DFT calculation, MH+
論文種類: 學術論文
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們將藉由密度泛函理論當中的B3LYP方法來探討週期表中第一排過渡金屬的氫化物([MH]+,M=Ni、Cu、Zn),與含氫的小分子(CH4、NH3、H2O)之氣相反應,研究產生氫氣的可能反應機制,以及反應位能與能障的討論。

    本實驗共分成三個部分進行研究:(1)MH+(M = Ni, Cu, Zn) + CH4 反應機構的理論探討,(2)MH+(M = Ni, Cu, Zn) +H2O 反應機構的理論探討,(3)MH+(M = Ni, Cu, Zn) + NH3 反應機構的理論探討。結果發現,在過渡金屬離子上加了一個hydrogen ligand的反應物[MH]+(M=Ni、Cu、Zn),皆會先靠近CH4、NH3、H2O等分子形成複合物,經由相似過渡態TS結構,促使CH4、NH3及H2O等分子中的C-H、N-H、O-H 鍵斷裂,並和金屬上的H結合產生氫氣進而脫除。而我們也觀察到,這三種金屬氫化物(NiH+, CuH+, ZnH+) 以及三種小分子(CH4、NH3、H2O)的反應,在位能曲面圖上出現不同的反應趨勢,針對上述的問題我們也會進行更深入的討論。

    We apply density functional theory (B3LYP method) to investigate the possible reaction mechanism of the dehydrogenation process in the reaction of transition metal hydrides ([MH]+, M = Ni, Cu, Zn) with small molecules containing hydrogen atoms (CH4, NH3, H2O) in the gas phase.

    This paper is divided into three parts to study reaction mechanisms of the reaction (1) MH+ (M=Ni,Cu,Zn) + CH4, (2) MH+ (M=Ni,Cu,Zn) + H2O, and (3) MH+ (M=Ni,Cu,Zn) + NH3. It has been found that the transition metals with an addition hydrogen ligand ([MH]+ ,M=Ni,Cu,Zn) will firstly attack the CH4, NH3, and H2O molecules respectively to form complexes. Then, through similar transition states (TS), they can induce C-H, N-H, and O-H bond breaking respectively in the CH4, NH3, and H2O molecules, and finally produce hydrogen molecules. We also observe that the potential energy surfaces in reactions of the three metal hydride (NiH+, CuH+, ZnH+) with the three molecules (CH4, NH3, H2O) appear different reaction trend. We will also discuss the related mechanisms in the above reaction systems.

    中文摘要 ............................. iii 英文摘要 ............................. iv §1. 緒論 ............................. 1 §2. 計算原理與方法 ................................. 3 §2-1 量子化學的計算原理與方法 ....................... 3 §2-1.1 量子化學 ................................... 3 §2-1.2 密度泛函理論(DFT) .......................... 6 §2-1.3 基底函數組(Basis Set) ...................... 8 §2-2 本論文採用的計算方法 ........................... 13 §3. MH+ (M=Ni,Cu,Zn) + CH4 反應機構的理論探討 ........15 §3-1 前言...........................................15 §3-2 結果與討論 .................................... 17 §3-2.1 Reaction of MH+ (M=Ni) + CH4 .............. 17 §3-2.2 Reaction of MH+ (M=Cu) + CH4 .............. 24 §3-2.3 Reaction of MH+ (M=Zn) + CH4 .............. 28 §3-2.4 The comparison between MH+(M=Ni,Cu,Zn) toward CH4 ............................................... 32 §4. MH+ (M=Ni,Cu,Zn) + H2O 反應機構的理論探討 ....... 36 §4-1 前言 ......................................... 36 §4-2 結果與討論 .................................... 37 §4-2.1 Reaction of MH+ (M=Ni) + H2O .............. 37 §4-2.2 Reaction of MH+ (M=Cu) + H2O .............. 43 §4-2.3 Reaction of MH+ (M=Zn) + H2O............... 47 §4-2.4 The comparison between MH+(M=Ni,Cu,Zn) toward H2O ............................................... 51 §5. MH+ (M=Ni,Cu,Zn) + NH3 反應機構的理論探討 ....... 55 §5-1 前言 ......................................... 55 §5-2 結果與討論 ................................................ 56 §5-2.1 Reaction of MH+ (M=Ni) + NH3 ............... 56 §5-2.2 Reaction of MH+ (M=Cu) + NH3 ............... 62 §5-2.3 Reaction of MH+ (M=Zn) + NH3................ 66 §5-2.4 The comparison between MH+(M=Ni,Cu,Zn) toward NH3 ........................................... 70 §6. 總結……………………………………………………………..75 §7. 參考文獻………………………………………………………..79 §8. 附件……………………………………………………………..85

    (1)Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1980, 102, 7129.
    (2)Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1984, 106,8117.
    (3)Crabtree, R. H. Chem. Rev. 1985, 85, 245.
    (4)Reents, W. L.; Strobel, F.; Freas, R. B.; Wronka, J.; Ridge, D. P.J. Phys. Chem. 1985, 89, 5666.
    (5)(a)Aristov, A.; Armentrout, P. B. J. Am. Chem. Soc. 1984, 106, 4065.(b)Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1986, 108, 1806. (c) Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 6178. (d) Georgiadis, R.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 7067. (e)Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 1209. (f)Sunderlin, L. S.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111,3845.
    (6)Kang, N.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7502.
    (7)Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem. 1988, 92,92.
    (8)Buckner, S. W.; Gord, J. R.; Freiser, B. S. J. Am. Chem. Soc. 1988,110, 6606.
    (9)Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989, 111, 75.
    (10)Magnera, T. F.; David, D. E.; Michl, J. J. Am. Chem. Soc. 1989,111, 4100.
    (11)(a)Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22,315. (b) Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313.
    (12)(a)Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 2033. (b)Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem. 1991, 95,3084. (c)Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem.1990, 94, 208. (d)Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem.1990, 94, 3008. (e) Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 3589. (f)Armentrout, P. B. Science 1991, 41, 175. (g)Fisher, E. R.; Armentrout, P. B. J. Am. Chem. Soc. 1992, 114, 2049. (h)Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem.1993, 97, 544. (i) Chen, Y.; Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem. 1994,98, 11490. (j)Chen, Y.; Armentrout, P. B. J. Phys. Chem. 1995, 99, 10775. (k)Haynes, C. L.; Chen, Y.; Armentrout, P. B. J. Phys. Chem. 1995,99, 9110.
    (13)Eller, K.; Schwarz, H. Chem. Rev. 1991, 91, 1121.
    (14)(a)Guo, B. C.; Kerns, K. P.; Castleman, A. W. J. Phys. Chem. 1992,96, 4879. (b)Chen, Z. Y.; Walder, G. J.; Castleman, A. W. Phys. Rev. B 1994,49, 2739
    (15)Arndsten, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H.Acc. Chem. Res. 1995, 28, 154.
    (16)Ryan, M. F.; Fiedler, A.; Schröder, D.; Schwarz, H. J. Am. Chem.Soc. 1995, 117, 2033.
    (17)Hall, C.; Perutz, R. N. Chem. Rev. 1996, 96, 3125.
    (18)Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879.
    (19)(a) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Phys. Chem. 1998, 102, 293. (b) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999,121, 574. (c) Irigoras, A.; Fowler, J. E.; Ugalde, J. M. J. Am. Chem. Soc. 1999, 121, 8549. (d) Irigoras, A.; Elizalde, O.; Silanes, I.; Fowler, J. E.; Ugalde, J. M.J. Am. Chem. Soc. 2000, 122, 114.
    (20)Schröder, D.; Shaik, S.; Schwarz, H. Acc. Chem. Res. 2000, 33,139.
    (21)(a) Russo, N.; Sicilia, E. J. Am. Chem. Soc. 2001, 123, 2588. (b) Sicilia, E.; Russo, N. J. Am. Chem. Soc. 2002, 124, 1471. (c) Michelini, M. C.; Sicilia, E.; Russo, N. J. Phys. Chem. 2002, 106,8937. (d)Michelini, M. C.; Sicilia, E.; Russo, N. J. Phys. Chem. A 2003, 107, 4862.
    (22)(a)Nakao, Y.; Taketsugu, T.; Hirao, K. J. Phys. Chem. 1999, 110,10863. (b) Wang, C.; Xu, X.; Cao, Z. ; Song, Y.; Zhang, Q. J. Am. Chem. Soc.A 2004, 107,6681.
    (23)(a) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106,3891. (b) Jackson, T. C.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc.1984, 106, 1252.
    (24)(a) Huang, S. K.; Allison, J. Organometallics 1983, 2, 833. (b)Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1980, 102, 7129.
    (25)(a) Fiedler, A.; Schröder, D.; Shaik, S.; Schwarz, H. J. Am. Chem.Soc. 1994, 116, 10734. (b) Ryan, M. F.; Fiedler, A.; Schröder, D.; Schwarz,H. Organometallics 1994, 13, 4072.
    (26)(a) Clemmer, D. E.; Aristov, N.; Armentrout, P. B. J. Phys. Chem.1993, 97, 544. (b) Clemmer, D. E.; Chen, Y. M.; Khan, F. A.; Armentrout,P. B. J. Phys. Chem. 1994, 98, 6522.
    (27)(a) Ekeberg, D.; Uggerud, E.; Lin, H. Y.; Sohlberg, K.; Chen, H. L. Ridge, D. P. Organometallics 1999, 18, 40. (b) Chen, Q.; Chen, H. P.;Kais, S.; Freiser, B. S. J. Am. Chem. Soc. 1997, 119, 12879. (c) Chen,Y. M.; Clemmer, D. D.; Armentrout, P. B. J. Am. Chem. Soc. 1994, 116,7815. (d) Armentrout, P. B. Acc. Chem. Res. 1995, 28, 430.
    (28)(a) Carpenter, C. J.; van Koppen, P. A. M.; Bowers, M. T.; Perry,J. K. J. Am. Chem. Soc. 2000, 122, 392. (b) van Koppen, P. A. M.; Perry,J.
    K.; Kemper, P. R.; Bushnell, J. E.; Bowers, M. T. Int. J. Mass Spectrom.1999, 187, 989.
    (29)Ryan, M. F.; Fiedler, A.; Schröder, D.; Schwarz, H. J. Am. Chem.Soc. 1995, 117, 2033.
    (30)Schröder, D.; Holthausen, M. C.; Schwarz, H. J. Phys. Chem. B 2004, 108, 14407.
    (31)Zhang, Q.; Bowers, M. T. J. Phys. Chem. A 2004, 108, 9755.
    (32)Schlangen, M.; Schwarz, H. Angew. Chem., Int. Ed. 2007, 46, 5614.
    (33)Li, W.; Wang, Y. ; Yan, P. ; Zang, X. ; Wang, Z. ; Liu, F. J. Phys. Chem. A 2009, 113, 1807.
    (34)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian: Wallingford, CT, 2004.
    (35)(a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.(d)Becke, A. D. Phys. Rev. 1988, A38, 3098.
    (36)Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
    (37)Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1989, 90, 2154.
    (38)(a) Reichert, E. L.; Thurau, G.; Weisshaar, J. C. J. Chem. Phys 2002, 117, 653. (b) Reichert, E. L.; Weisshaar, J. C. J. Phys. Chem. A 2002, 106, 5563. (c) Yi, S. S.; Reichert, E. L.; Holthausen, M. C.; Koch,W.; Weisshaar, J C. Chem.-Eur. J. 2000, 6, 2232. (d) Porembski, M.;Weisshaar, J. C. J. Phys. Chem. A 2001, 105, 4851.
    (39)(a) Loos, J.; Schröder, D.; Zummack, W.; Schwarz, H. Int. J. Mass Spectrom. 2002, 217, 169. (b) Barsch, S.; Schröder, D.; Schwarz, H. Int.J. Mass Spectrom. 2000, 202, 363. (c) Dieterle, M.; Harvey, J. N.;Heinemann, C.; Schwarz, J.; Schröder, D.; Schwarz, H. Chem. Phys. Lett.1997, 277, 399.
    (40)Walters, R. S.; Jaeger, T. D.; Duncan, M. A. J. Phys. Chem. A 2002, 106, 10482.
    (41)(a) Zhang, X. G.; Liyanage, R.; Armentrout, P. B. J. Am. Chem.Soc. 2001, 123, 5563. (b) Armentrout, P. B.; Baer, T. J. Phys. Chem. 1996, 100, 12866. (c) Sievers, M. R.; Armentrout, P. B. J. Chem. Phys. 1995, 102, 754. (d) Chen, Y.; Armentrout, P. B. J. Phys. Chem. 1995, 99, 10775.
    (42)(a) Kemper, P. R.; Weis, P.; Bowers, M. T. Chem. Phys. Lett.1998,293, 503. (b) Kemper, P. R.; Bushnell, J.; von Koppen, P. A. M.; Bowers,M. T. J. Phys. Chem. 1993, 97, 1810.
    (43)(a) Achatz, U.; Beyer, M.; Joos, S.; Fox, B. S.; Niedner-Schatteburg, G.; Bondybey, V. E. J. Phys. Chem. A 1999, 103, 8200. (b) Albert, G.;Berg, C.; Beyer, M.; Achatz, U.; Joos, S.; Niedner-Schatteburg, G.;Bondybey, V. E. Chem. Phys. Lett. 1997, 268, 235.
    (44)(a) Westerberg, J.; Blomberg, M. R. A. J. Phys. Chem. A 1998,102, 7303. (b) Wittborn, A. M. C.; Costas, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Chem. Phys. 1997, 107, 4318.
    (45)Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
    (46)(a) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1982, 104, 4240.(b) Sakakura, T.; Sodeyama, T.; Sasaki, K.; Wada, K.; Tanaka, M. J. Am.Chem. Soc. 1990, 112, 7221.
    (47)(a) Zhang, Q.; Kemper, P. R.; Shin, S. K.; Bowers, M. T. Int. J.Mass Spectrom. 2001, 204, 281. (b) Zhang, Q.; Kemper, P. R.; Bowers,M. T. Int. J. Mass Spectrom. 2001, 210, 265.
    (48)Schröder, D.; Shaik, S. C.; Schwarz, H. Acc. Chem Res. 2000, 33, 139.
    (49)Schilling, J. B.; Goddard III, W. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 582.

    下載圖示
    QR CODE