研究生: |
謝長欣 Hsieh, Chang-Hsin |
---|---|
論文名稱: |
壓力感測元件數量對步態動力學參數預測準確度之影響 Effects of pressure sensor amount on accuracy of predicting gait kinetic parameters |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 步態著地期 、鞋內足底壓力系統 、足底壓力負荷模式 |
英文關鍵詞: | gait stance phase, insole system, plantar pressure loading pattern |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DAP.003.2018.F03 |
論文種類: | 學術論文 |
相關次數: | 點閱:177 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲探討感測元件數量如何改變預測垂直地面反作用力 (vGRF) 曲線及足底壓力中心 (CoP) 座標之準確度。實驗招募10名健康參與者進行舒適走路及跑步,記錄步態著地期間,測力板之vGRF和Pedar-X system之原始壓力值。以皮爾森相關係數 (PCC) 及方均根誤差 (RMSE) 比較分別由3、5、7、9、11、13、15、17個感測元件組成的八種配置,與黃金標準所測得之vGRF曲線和CoP座標的關係變化。結果顯示不論何種軸向或動作型態,各數量配置與黃金標準之vGRF曲線相關係數及 CoP方均根誤差隨感測元件數量增加而升高與降低,超過11個之後,再增添感測元件已無法明顯提升預測步態動力學參數的能力。本結果在科技應用上可供足底壓力偵測產品的功能性開發使用,開發者可以依據準確度需求選取感測元件;學術上則填補文獻中在感測元件數量選擇未有共識的缺口。
The purpose of this study was to define the effect of the pressure sensor amount on accuracy of predicting vertical ground reaction force (vGRF) and center of pressure (CoP) during gait. Ten healthy participants walked and ran at self-selected speed. Pressure values of all sensor of Pedar-X system and vGRF measured by the force plate during stance phase were recorded. Eight sensor layouts were established and vGRF curves and CoP trajectories between each layout, Pedar-X system and the force plate were compared using Pearson’s correlation coef-ficient (PCC) and root mean square error (RMSE) respectively. The results showed that PCC grew with the amount of sensor and RMSE decreased as sensor increased, and 11 sensors was the stop point. 13, 15 and 17 sensors were no longer able to improve the ability in predicting gait kinetic parameters. This finding can be used for application of plantar pressure detection, developers can select the sensor amount according to required accuracy; as for academic, it fills in the lack of agreement in sensor amount selecting in pervious literature.
Addison, B. J., Lieberman, D. E. (2015). Tradeoffs between impact loading rate, vertical im-pulse and effective mass for walkers and heel strike runners wearing footwear of var-ying stiffness. Journal of Biomechanics, 48, 1318-1324. doi:10.1016/j.biomech.2015.01.029
Barnett, S., Cunningham, J. L., West, S. (2001). A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clinical Biomechanics, 16, 353–357. doi:10.1016/S0268-0033(01)00026-2
Becker, J., Pisciotta, E., James, S., Osternig, L. R., Chou, L. S. (2014). Center of pressure tra-jectory differences between shod and barefoot running. Gait & Posture, 40, 504-509. doi:10.1016/j.gaitpost.2014.06.007
Breine, B., Malcolm, P., Segers, V., Gerlo, J., Derie, R., Pataky, T., . . . De Clercq, D. (2017). Magnitude and spatial distribution of impact intensity under the foot relates to initial foot contact pattern. Journal of Applied Biomechanics, 1-21. doi:10.1123/jab.2016-0206
Brund, R. B. K., Rasmussen, S., Nielsen, R. O., Kersting, U. G., Laessoe, U., Voigt, M. (2017). Medial shoe-ground pressure and specific running injuries: A 1-year prospec-tive cohort study. Journal of Science and Medicine in Sport, 20, 830-834. doi: 10.1016/j.jsams.2017.04.001
Castro, M., Abreu, S., Sousa, H., Machado, L., Santos, R., & Vilas-Boas, J. P. (2013). Ground reaction forces and plantar pressure distribution during occasional loaded gait. Ap-plied Ergonomics, 44(3), 503-509. doi:10.1016/j.apergo.2012.10.016
Cavanagh, P. R., & Ulbrecht, J. S. (1994). Clinical plantar pressure measurement in diabetes rationale and methodology. The Foot, 4, 123-135.
Chang, B. C., Liu, D. H., Chang, J. L., Lee, S. H., & Wang, J. Y. (2014). Plantar pressure analysis of accommodative insole in older people with metatarsalgia. Gait & Posture, 39(1), 449-454. doi:10.1016/j.gaitpost.2013.08.027
Chesnin, K. J., Selby-Silverstein, L., Besser, M. P. (2000). Comparison of an in-shoe pressure measurement device to a force plate: concurrent validity of center of pressure meas-urements. Gait & Posture, 12, 128-133.
Chevalier, T. L., Hodgins, H., Chockalingam, N. (2010). Plantar pressure measurement using an in-shoe system and a pressure platform: A comparison. Gait & Posture, 31, 397-399. doi:10.1016/j.gaitpost.2009.11.016
Cheung, R. T. H., An, W. W., Au, I. P. H., Zhang, J. H., Chan, Z. Y. S., Man, A., . . . Lam, G. W. K. (2017). Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners. PLoS One, 12(6), e0175724. doi:10.1371/journal.pone.0175724
Chuckpaiwong, B., Nunley, J. A., Mall, N. A., & Queen, R. M. (2008). The effect of foot type on in-shoe plantar pressure during walking and running. Gait & Posture, 28(3), 405-411. doi: 10.1016/j.gaitpost.2008.01.012
Claverie, L., Ille, A., & Moretto, P. (2016). Discrete sensors distribution for accurate plantar pressure analyses. Medical Engineering and Physics, 38(12), 1489-1494. doi: 10.1016/j.medengphy.2016.09.021
Crea, S., Donati, M., De Rossi, S. M. M., Oddo, C. M., Vitiello, N. (2014). A wireless flexible sensorized insole for gait analysis. Sensors, 14, 1073-1093. doi:10.3390/s140101073
Debbi, E. M., Wolf, A., Goryachev, Y., Yizhar, Z., Luger, E., Debi, R., Haim, A. (2012). In-shoe center of pressure: Indirect force plate vs. direct insole measurement. The Foot, 22, 269-275. doi:10.1016/j.foot.2012.07.001
de Castro, M. P., Meucci, M., Soares, D. P., Fonseca, P., Borgonovo-Santos, M., Sousa, F., . . . Vilas-Boas, J. P. (2014). Accuracy and repeatability of the gait analysis by the WalkinSense system. BioMed Research International, 2014, 348659. doi:10.1155/2014/348659
Goetschius, J., Feger, M. A., Hertel, J., & Hart, J. M. (2017). Validating Center of Pressure Balance Measurements Using the MatScan® Pressure Mat. Journal of Sport Rehabili-tation, 1-14. doi:10.1123/jsr.2017-0152
Goffar, S. L., Reber, R. J., Christiansen, B. C., Miller, R. B., Naylor, J. A., Rodriguez, B. M., . . . Teyhen, D. S. (2013). Changes in dynamic plantar pressure during loaded gait. Physical Therapy, 93, 1175-1184. doi: 10.2522/ptj.20120103
Hegde, N., Bries, M., Swibas, T., Melanson, E., Sazonov, E. (2017). Automatic recognition of activities of daily living utilizing insole based and wrist worn wearable sensors. IEEE Journal of Biomedical and Health Informatics. doi: 10.1109/JBHI.2017.2734803
Hinkle, D. E., Wiersma, W., Jurs, S. G. (2003). Applied statistics for the behavioral scienc-es(5th ed.). Boston: Houghton Mifflin.
Ho, I. J., Hou, Y. Y., Yang, C. H., Wu, W. L., Chen, S. K., & Guo, L. Y. (2010). Comparison of plantar pressure distribution between different speed and incline during treadmill jogging. Journal of Sport Science and Medicine, 9, 154-160.
Jacobs, D. A., Ferris, D. P., (2016). Evaluation of a low-cost pneumatic plantar pressure in-sole
for predicting ground contact kinetics. Journal of Applied Biomechanics, 32, 215-220. doi: 10.1123/jab.2015-0142
Jonely, H., Brismee, J. M., Sizer Jr., P. S., & James, C. R. (2011). Relationships between clin-ical measures of static foot posture and plantar pressure during static standing and walking. Clinical Biomechanics, 26(8), 873-879.
Kernozek, T. W., LaMott, E. E., Dancisak, M. J. (1996). Reliability of an in-shoe pressure measurement system during treadmill walking. Foot Ankle International, 17(4), 204-209.
Kim, T., Park, J. (2017). Short-term effects of sports taping on navicular height, navicular drop and peak plantar pressure in healthy elite athletes: A within-subject comparison. Medicine, 96(46), e8714. doi:10.1097/MD. 0000000000008714
Liang, T. C., Lin, J. J., & Guo, L. Y. (2016). Plantar pressure detection with fiber bragg grat-ings sensing system. Sensors, 16(10).
Mann, R., Malisoux, L., Brunner, R., Gette, P., Urhausen, A., Statham, A., . . . Theisen, D. (2014). Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running. Gait & Posture, 39(1), 455-459. doi:10.1016/j.gaitpost.2013.08.026
Martinez-Marti, F., Martinez-Garcia, M. S., Garcia-Diaz, S. G., Garcia-Jimenez, J., Palma, A. J., & Carvajal, M. A. (2014). Embedded sensor insole for wireless measurement of gait parameters. Australasian Physical & Engineering Sciences in Medicine, 37(1), 25-35. doi:10.1007/s13246-013-0236-7
McSeveny, A., Conway, R., Wilkes, S., & Smith, M. (2009). International mathematics for the middle years 5. Australia: Peason Education Australia.
Moufawad el Achkar, C., Lenoble-Hoskovec, C., Paraschiv-Ionescu, A., Major, K., Bula, C., & Aminian, K. (2016). Instrumented shoes for activity classification in the elderly. Gait & Posture, 44, 12-17. doi:10.1016/j.gaitpost.2015.10.016
Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Büla, C. J., Robert, P. (2003). Am-bulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineer-ing ,50(6), 711–723. doi:10.1109/TBME.2003812189
Nurse, M. A., & Nigg, B. M. (2001). The effect of changes in foot sensation on plantar pres-sure and muscle activity. Clinical Biomechanics, 16, 719-727.
Oerbekke, M. S., Stukstette, M. J., Schütte, K., de Bie, R. A., Pisters, M. F., & Vanwanseele, B. (2017). Concurrent validity and reliability of wireless instrumented insoles meas-uring postural balance and temporal gait parameters. Gait & Posture, 51, 116-124.
Okholm Kryger, K., Jarratt, V., Mitchell, S., & Forrester, S. (2016). Can subjective comfort be used as a measure of plantar pressure in football boots? Journal of Sports Sciences, 35(10), 953-959. doi:10.1080/02640414.2016.1206661
Pappas, I. P., Popovic, M. R., Keller, T., Dietz, V., Morari, M. (2001). A reliable gait phase detection system. IEEE Transactions on Neural Systems and Rehabilitation Engineer-ing, 9(2), 113–125. doi:10.1109/7333.928571
Price, C., Parker, D., & Nester, C. (2016). Validity and repeatability of three in-shoe pressure measurement systems. Gait & Posture, 46, 69-74.
Schepers, H. M., Koopman, H. F., Veltink, P. H. (2007). Ambulatory assessment of ankle and foot dynamics. IEEE Transactions on Biomedical Engineering, 54(5), 895–902. doi:10.1109/TBME.2006.889769
Schmidt, H., Sauer, L. D., Lee, S. Y., Saliba, S., & Hertel, J. (2011). Increased in-shoe lateral plantar pressures with chronic ankle instability. Foot & Ankle International, 32(11), 1075-1080. doi:10.3113/FAI.2011.1075
Soltanzadeh, Z., Najar, S. S., Haghpanahi, M., & Mohajeri-Tehrani, M. R. (2017). Plantar static pressure distribution in normal feet using cotton socks with different structures. Journal of the American Podiatric Medical Association, 107(1), 30-38.
Sullivan, J., Burns, J., Adams, R., Pappas, E., & Crosbie, J. (2015). Plantar heel pain and foot loading during normal walking. Gait & Posture, 41(2), 688-693. doi:10.1016/j.gaitpost.2015.01.025
Teyhen, D. S., Stoltenberg, B. E., Collinsworth, K. M., Giesel, C. L., Williams, D. G., Kardouni, C. H., . . . McPoil, T. (2009). Dynamic plantar pressure parameters associ-ated with static arch height index during gait. Clinical Biomechanics, 24(4), 391-396.
van der Zwaard, B. C., Vanwanseele, B., Holtkamp, F., van der Horst, H. E., Elders, P. JM., Menz, H. B. (2014). Variation in the location of the shoe sole flexion point influences plantar loading patterns during gait. Journal of Foot and Ankle Research, 7:20.
Zhang, H., Zanotto, D., & Agrawal, S. K. (2017). Estimating CoP trajectories and kinematic gait parameters in walking and running using instrumented insoles. IEEE Robotics and Automation Letters, 2(4), 2159-2165. doi:10.1109/lra.2017.2721550