簡易檢索 / 詳目顯示

研究生: 徐晟洋
Hsu, Cheng-yang
論文名稱: 以Lifelogging方法觀察大學生主觀認知與實際手機和社群媒介使用行為之差異性研究
Exploring Differences between Subjective Perception and Actual Smart Phone Use of University Students based on Lifelogging
指導教授: 謝吉隆
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 144
中文關鍵詞: Lifelogging主觀認知智慧型手機
英文關鍵詞: Lifelogging, subjective perception, smart phone
DOI URL: https://doi.org/10.6345/NTNU202205142
論文種類: 學術論文
相關次數: 點閱:218下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了探究大學生實際使用智慧型手機與社群媒介在使用時間及次數上與主觀認知的的差異,以及實際的使用數據是否反應大學生對於使用時間、次數多寡的認知,本研究以北部地區大二以上學生為研究對象,採用問卷與Lifelogging的方法分別收集研究參與者的智慧型手機、手機的Facebook、手機的Line實際的使用時間與次數,以及對於使用時間與次數的認知。本研究又以單題式和量表兩種方式,調查其對於智慧型手機及手機上的Facebook、Line的使用多寡認知與重度使用程度,藉此觀察實際數據是否隨著認知高低而呈現相同的使用時間與次數分佈。
    在研究分析方面,本研究採用無母數配對樣本中位數比較來檢視使用智慧型手機、透過手機使用Facebook、Line三者在使用時間與次數方面的實際數據,是否與認知有所差異,接著比較無母數檢定中多組母群體的中位數,進一步觀察不同時段使用時間與次數是否影響認知與實際的差異,之後再以曼-惠二氏U檢定檢視研究參與者的感情狀態是否影響其認知與實際的使用時間及次數的差異。最後同樣再以曼-惠二氏U檢定檢視大學生之使用時間與次數分佈是否會隨著認知高低而出現差異。
    研究結果顯示,在智慧型手機、手機上Facebook、手機上Line的使用時間在實驗參與者的認知上顯著高於實際使用,而使用次數則顯著低於實際使用,且三者的使用時間與次數皆呈現從早到晚逐漸遞增,早上時段使用時間、次數顯著較少。感情狀態則顯示實驗參與者對於手機上Facebook使用時間與次數的認知與實際使用呈現完全相反的結果,凸顯認知上的使用可能偏離實際使用情況。最後,參與本研究的大學生之使用多寡認知高低並不會在智慧型手機與社群媒介的實際使用時間、次數呈現出顯著的差異,表示使用時間或次數並不能被單純使用來作為探討大學生本身認知使用多寡的指標。

    This study is to discuss the difference of university student’s smart phones and social media use in the subjective perception and the actual use, and whether the actual use amount of the smartphone data will reflect the awareness of student’s smartphone and social media use, we used questionnaire survey and lifelogging to achieve the duration and frequency of use on smartphone, Facebook APP and LINE APP in the subjective perception and the actual use, and use the single question and addiction scale to measure the awareness of student’s smartphone and social media use, then we can understand whether the amount of the smartphone data will reflect the awareness of student’s smartphone and social media use. In this study, we unacceptable the first-year undergraduate student and just accept the north area in Taiwan.
    In this study we use Wilcoxon signed-rank test to compare the duration and frequency of use on smartphone, Facebook APP and LINE APP in the subjective perception and the actual use, then we use Kruskal–Wallis test to compare the difference of different times of day, moreover we use Mann–Whitney U test to campare the duration and frequency of use on smartphone, Facebook APP and LINE APP between single and in a relationship students, finally we use Kruskal–Wallis test to observe whether the amount of the smartphone data will reflect the awareness of student’s use on smartphone and social media.
    Primary results exhibited the the subjective perception of student’s smartphone and social media duration of use apparently higher than actual use, and the subjective perception of student’s smartphone and social media frequency of use apparently lower than actual use. Both of the duration and frequency increase frome morning to night, and there are least duration and frequency in the morning. The different relationship status display there are totally different result on the use of duration and frequency, it means people’s subjective perception probably not the true situation. Finally the use of duration and frequency will not reflect the awareness of student’s use on smartphone and social media, it means we can’t use just duration and frequency of use on smartphone or social media to decide if a person is addicted to something or not.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 5 第二章 文獻探討 7 第一節 網路對人類時間意義的改變 7 第二節 手機對使用時間意義與認知研究回顧 9 第三節 Lifelogging與真實行為探勘的發展與應用 11 第四節 真實行為探勘的收集與分析方法 16 第五節 智慧型手機、Facebook、Line使用時間與認知調查方法 19 第三章 研究方法 22 第一節 研究架構 22 第二節 研究假設 24 第三節 研究工具 26 第四節 研究對象 29 第五節 研究分析 29 第四章 研究結果與分析 31 第一節 受試者基本資料分析 31 第二節 信度與效度分析 32 第三節 受試者認知與實際使用結果的差異分析 35 第四節 不同時段中受試者認知與實際使用結果的差異分析 56 第五節 感情狀態對受試者認知與實際使用結果的差異分析 74 第六節 使用多寡與重度使用程度對受試者實際使用結果的使用差異 98 第七節 研究假設驗證結果 110 第五章 結論與建議 114 第一節 結論 114 第二節 研究貢獻 116 第三節 未來研究建議 117

    資策會ECER-FIND。FIND:Focus on Internet News & Data. http://www.find.org.tw/0105/cooperate/ Accessed: 10/15/2002
    FIND(2010)。2009年第三季我國行動上網觀測。檢至:http://www.find.org.tw/market_info.aspx?n_ID=7083
    FIND(2014)。驚!每人每日有1/8醒著的時間都在使用APP!檢至:http://www.iii.org.tw/m/News-more.aspx?id=1476
    李開復(2009) 網際網路40年-新一代網際網路向我們走來。2010/10/22 , 取自http://queer-boy.blog.ntu.edu.tw/?p=34
    王淑美(2011,7月)。網路作為時光機:日常網路使用與時間意義之初探。於國立交通大學客家文化學院(新竹縣竹北市六家五路一段一號)舉行,中華傳播學會2011年會,新竹縣。
    王淑美(2014)。傳播科技與生活韻律―關於研究方法的探討。傳播研究與實踐,4,23-43。
    葉乃靜(2008)。由時間和空間觀探討網路學習。國家圖書館館刊,97(2),1-22。
    卞冬磊(2009)。媒介時間之「內化」:電子媒介社會的時間紀律及其形成。傳播與管理研究,8(2),79-110。
    曹家榮(2011,9月)。流動的手機:液態現代性脈絡下的速度、時空與公私領域。於國立清華大學人文社會學院(新竹市光復路二段101號)舉行,E世代重要議題:人文社會面向研討會,新竹市。
    楊純青、陳祥 (2006), 網路心流經驗研究中之挑戰:從效度觀點進行檢視與回顧, 資訊社會研究,11, 145-176。
    Aharony, N., Pan, W., Ip, C., & Pentland, A. (2010, September). Tracing mobile phone app installations in the “friends and family” study. In Proceedings of the 2010 Workshop on Information in Networks (WIN’10).

    Aharony, N., Pan, W., Ip, C., Khayal, I., & Pentland, A. (2011). Social fMRI: Investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing, 7(6), 643-659.
    Baek, Eun-Ok, and Seth Freehling. "Using Internet Communication Technologies by Low-Income High School Students in Completing Educational Tasks Inside and Outside the School Setting." Computers in The Schools 24.1-2 (2007): 33-55. Web. 16 Feb. 2010.
    Bauer, G., & Lukowicz, P. (2012, March). Can smartphones detect stress-related changes in the behaviour of individuals?. In Pervasive Computing and Communications Workshops (PERCOM Workshops), 2012 IEEE International Conference on (pp. 423-426). IEEE.
    Bell, G. and Gemmell, J. Total Recall: How the E-Memory Revolution Will Change Everything.Dutton, New York, 2009.
    Csikszentmihalyi, M., Larson, R., & Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of youth and adolescence, 6(3), 281-294.
    Dawber, T. R. (1980). The Framingham Study: the epidemiology of atherosclerotic disease (Vol. 84). Cambridge: Harvard University Press.
    Eagle, N., & Pentland, A. (2006). Reality mining: sensing complex social systems. Personal and ubiquitous computing, 10(4), 255-268.
    Eisenhower, D., Mathiowetz, N. A.,&Morganstein, D. (1991). Recall error: Sources and bias reduction techniques. In P. P. Biemer , R. M. Groves, L. E. Lyber, N. A. Mathiowetx,&S. Sudman (Eds.), Measurement errors in surveys (pp. 127-144). New York: Wiley.
    Facebook (2011). Press room. Retrieved June 25, 2011, from http://www.facebook.com/press/info.php?statistics
    Facebook Data Science (2014). When Love Goes Awry. Retrieved February 16, 2014, from https://www.facebook.com/notes/facebook-data-science/when-love-goes-awry/10152066701893859?pnref=story
    Fischer, J. E. (2009). Experience-sampling tools: a critical review. Mobile living labs, 9, 1-3.

    Fotopoulou (2014). The Quantified Self community, lifelogging and the making of “smart” publics。Retrieved from https://www.opendemocracy.net/participation-now/aristea-fotopoulou/quantified-self-community-lifelogging-and-making-of-%E2%80%9Csmart%E2%80%9D-pub
    Green, N. (2002). "On the move: Technology, mobility, and the mediation of social time and space." The Information Society 18:281-292.
    Hand, M., & Shove, E. (2004). Orchestrating Concepts: Kitchen Dynamics and Regime Change in Good Housekeeping and Ideal Home, 1922-2002. Home Cultures, 1(3), 235-256.
    Hektner, J. M., Schmidt, J. A., & Csikszentmihalyi, M. (Eds.). (2007).Experience sampling method: Measuring the quality of everyday life. Sage.
    Ho, J., & Intille, S. S. (2005, April). Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 909-918). ACM.
    Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the relationship between psychological characteristics, mobile phone addiction and use of mobile phones by Taiwanese university female students. Computers in Human Behavior, 28(6), 2152-2159.
    Hong, F. Y., Huang, D. H., Lin, H. Y., & Chiu, S. L. (2014). Analysis of the psychological traits, Facebook usage, and Facebook addiction model of Taiwanese university students. Telematics and Informatics, 31(4), 597-606.
    Hori, T. and Aizawa, K. Context-based video retrieval system for the lifelog applications. In Proceedings of the ACM Workshop on Multimedia Information Retrieval (Berkeley, CA, Nov.). ACM Press, New York, 2003, 31–38.
    Junco, R. (2012). The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Computers & Education, 58(1), 162-171.
    Katz, J. E. and M. A. Aakhus. (2002). "Conclusion: Making meaning of mobiles─a theory of Apparatgeist." in Perpetual contact: Mobile communication, private talk,public performance, edited by J. E. Katz and M. A. Aakhus. Cambridge: Cambridge University Press.

    Kelley, T. L.(1939).The selection of upper and lower groups for the validation of test item,” Educational Psychology, 30, pp. 17-24.
    Kelsey Mays, Katie Pazur, Hank Samuels (2010). So You Think You Can Multitask? Retrieved from http://pitjournal.unc.edu/article/so-you-think-you-can-multitask
    Lazer D, Pentland A, Adamic A, Aral S, Barabási A-L, et al. (2009) Life in the network: the coming age of computational social science. Science 323: 721.
    Lee, Heejin, and Liebenau, Jonathan. (2000). Time and the Internet at the turn of the millenium. Time and Society 9(1):43–56.
    Levine, L. E., Waite, B. M., & Bowman, L. L. (2007). Electronic media use, reading, and academic distractibility in college youth. CyberPsychology & Behavior, 10(4), 560–566.
    Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.
    Moturu, S. T., Khayal, I., Aharony, N., Pan, W., & Pentland, A. (2011, August). Sleep, mood and sociability in a healthy population. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE(pp. 5267-5270). IEEE.
    Pentland, A. (2009). Reality mining of mobile communications: Toward a new deal on data. The Global Information Technology Report 2008–2009, 1981.
    Robinson, J., & Godbey, G. (1997). Time for life: The surprising ways Americans use their time. University Park, PA: Pennsylvania State University Press.
    Sellen, A. J., & Whittaker, S. (2010). Beyond total capture: a constructive critique of lifelogging. Communications of the ACM, 53(5), 70-77.
    Steve Hodges, L.Williams, E.Berry, S.Izadi, J.Srinivasan, A.Butler, G.Smyth, N.Kapurand, and K.Wood. (2006). SenseCam: A retrospective memory aid”, Ubiquitous Computing, Proceedings of Ubicomp 2006, Springer, pp.177-193
    Thrift, N. (1990). The making of a capitalist time consciousness. The Sociology of Time, 105.
    Urry, J. (2000). Mobile sociology. British Journal of Sociology, 51(1), 185-203
    Whittaker, S., Tucker, S., Swampillai, K., & Laban, R. (2008). Design and evaluation of systems to support interaction capture and retrieval. Personal and Ubiquitous Computing, 12(3), 197-221.
    Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder.Cyberpsychology and Behavior, 1(3), 237–244.
    Zerubavel, E. (1976). Timetables and scheduling: on the social organization of time. Sociological Inquiry, 46(2), 87-94.

    下載圖示
    QR CODE