簡易檢索 / 詳目顯示

研究生: 楊勝安
Sheng-An Yang
論文名稱: raw透過限制Dpp的表現抑制果蠅心臟細胞的死亡
raw Suppresses Apoptosis of Cardial Cell through Restricting the Expression of Dpp in Drosophila
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 61
中文關鍵詞: 果蠅心臟細胞細胞凋亡
英文關鍵詞: Raw, Drosophila, JNK, Dpp, apoptosis, TAK1
論文種類: 學術論文
相關次數: 點閱:187下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Raw是djnk作用途徑的組成分子之一,且在背部癒合時能夠調控dpp在leading edge的表現。raw突變的果蠅胚胎中,Dpp的表現範圍於胚胎發育中期(第12-14時期)時將會顯著擴張。以往的研究證實在中胚層表現過多的dpp會造成心臟先驅細胞的增生,而raw突變的果蠅在第13-14時期時,心臟先驅細胞也會過度表現,且心臟細胞的增生與過度表現的dpp於時空上是一致的。然而到了胚胎發育的晚期,多種類型的心臟細胞表現卻都消失。因為在raw突變的果蠅胚胎中,在背部的外胚層和中胚層都有大量的細胞死亡,因此我們假設心臟細胞的缺失是由細胞凋亡所引起。另一方面,因為死亡的細胞和過度表現的dpp於時空上也有高度的一致性,表示過量的dpp可能是造成果蠅細胞凋亡的原因。在本研究中,我們也證實單獨表現dpp即可造成細胞凋亡,且細胞死亡的程度與dpp的活性成正比。此外我們也在中胚層表現顯性抑制的dTAK1而減少了raw突變中的心臟細胞凋亡,證實dpp是透過dTAK1而造成細胞的死亡。另一方面dTAK1也被證實能夠活化dpp及djnk的表現,這代表中胚層的djnk訊號將會持續的被來自背部外胚層大量表現的dpp所活化。再者,我們也證實表現顯性抑制的p53可以減少因為在中胚層大量表現dTAK1所造成的細胞凋亡。因為在哺乳動物中,BMP訊息路徑所造成的細胞凋亡也由dTAK1所中介,因此由BMP所造成的細胞凋亡於演化上應該是非常保守的。

    Raw, a component of djnk signaling pathway, plays a role in dorsal closure by modulating expression of Dpp in epidermal cells at the leading edge. The expression domain of Dpp was found to be markedly expanded in raw mutant embryos at stages 12-14. Similar to a previous study, we found that deficit in raw causes overproduction of cardial precursor cells in Drosophila at stages 13-14 which is concurrent with the ectopic Dpp activity. This result can be explained because mesodermal overexpression of dpp has shown to promote formation of cardial precursors. Nevertheless, various cardial cells are disappeared in raw mutant embryos at stages 15-16. We hypothesized that loss of cardial cell is resulted from apoptosis in late raw mutants. Indeed, excessive cell death, particularly in dorsal ectoderm and dorsal mesoderm, were observed in raw mutant embryos. Since the distribution of apoptotic cell coincides well with both the spatial and temporal expression domain of ectopic dpp, suggesting that ectopic dpp may induce cardial cell apoptosis in Drosophila. We show that increasing in Dpp activity alone promotes apoptosis in dose-dependent manner. In addition, we show that Dpp induced apoptosis is mediated through dTAK1, as mesodermally expression of a dominant negative dTAK1 suppresses apoptosis of cardial cell in raw mutation embryos. Interestingly, dTAK has shown to activate expression of djnk and dpp. This means that djnk signaling is constitutively activated in mesoderm by ectopic dpp from dorsal ectoderm. We have further demonstrated mesodermal dTAK1 induced apoptosis can be suppressed by expression of dominant negative p53. Since BMP signaling pathway induces apoptosis has also been shown to be mediated through TAK1 in mammals. Thus, the BMP induced apoptosis pathway may be evolutionarily conserved.

    Abstract..............................................I 摘要..................................................III Acknowledgement.......................................V Table of Content......................................VII Introduction..........................................1 Objectives of thisresearch............................9 Material and Methods..................................10 Results...............................................13 Discussion............................................22 References............................................27 Figures...............................................36

    Abrams, J. M., White, K., Fessler, L. I. and Steller, H. (1993). Programmed cell death during Drosophila embryogenesis. Development 117, 29-43.

    Bates, K. L., Higley, M. and Letsou, A. (2008). Raw mediates antagonism of AP-1 activity in Drosophila. Genetics 178, 1989-2002.

    Baylies, M. K. and Bate, M. (1996). twist: a myogenic switch in Drosophila. Science 272, 1481-4.

    Bier, E. and Bodmer, R. (2004). Drosophila, an emerging model for cardiac disease. Gene 342, 1-11.

    Blake, K. J., Myette, G. and Jack, J. (1999). ribbon, raw, and zipper have distinct functions in reshaping the Drosophila cytoskeleton. Dev Genes Evol 209, 555-9.

    Broihier, H. T., Moore, L. A., Van Doren, M., Newman, S. and Lehmann, R. (1998). zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125, 655-66.

    Byars, C. L., Bates, K. L. and Letsou, A. (1999). The dorsal-open group gene raw is required for restricted DJNK signaling during closure. Development 126, 4913-23.

    Cheng, W. H., Zheng, X., Quimby, F. R., Roneker, C. A. and Lei, X. G. (2003). Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis. Biochem J 370, 927-34.

    Chouinard, N., Valerie, K., Rouabhia, M. and Huot, J. (2002). UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365, 133-45.

    Cripps, R. M. and Olson, E. N. (2002). Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246, 14-28.

    Das, P., Maduzia, L. L., Wang, H., Finelli, A. L., Cho, S. H., Smith, M. M. and Padgett, R. W. (1998). The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 125, 1519-28.

    Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M. and Davis, R. J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-37.

    Gajewski, K., Kim, Y., Lee, Y. M., Olson, E. N. and Schulz, R. A. (1997). D-mef2 is a target for Tinman activation during Drosophila heart development. EMBO J 16, 515-22.

    Gajewski, K., Zhang, Q., Choi, C. Y., Fossett, N., Dang, A., Kim, Y. H., Kim, Y. and Schulz, R. A. (2001). Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 233, 425-36.

    Gaumer, S., Guenal, I., Brun, S., Theodore, L. and Mignotte, B. (2000). Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ 7, 804-14.

    Glise, B., Bourbon, H. and Noselli, S. (1995). hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451-61.

    Glise, B. and Noselli, S. (1997). Coupling of Jun amino-terminal kinase and Decapentaplegic signaling pathways in Drosophila morphogenesis. Genes Dev 11, 1738-47.

    Harden, N., Loh, H. Y., Chia, W. and Lim, L. (1995). A dominant inhibitory version of the small GTP-binding protein Rac disrupts cytoskeletal structures and inhibits developmental cell shape changes in Drosophila. Development 121, 903-14.

    Ip, Y. T. and Davis, R. J. (1998). Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10, 205-19.

    Jagla, K., Frasch, M., Jagla, T., Dretzen, G., Bellard, F. and Bellard, M. (1997). ladybird, a new component of the cardiogenic pathway in Drosophila required for diversification of heart precursors. Development 124, 3471-9.

    Jin, S., Martinek, S., Joo, W. S., Wortman, J. R., Mirkovic, N., Sali, A., Yandell, M. D., Pavletich, N. P., Young, M. W. and Levine, A. J. (2000). Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci U S A 97, 7301-6.

    Johnson, A. N., Burnett, L. A., Sellin, J., Paululat, A. and Newfeld, S. J. (2007). Defective decapentaplegic signaling results in heart overgrowth and reduced cardiac output in Drosophila. Genetics 176, 1609-24.

    Kendall, S. E., Battelli, C., Irwin, S., Mitchell, J. G., Glackin, C. A. and Verdi, J. M. (2005). NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade. Mol Cell Biol 25, 7711-24.

    Kim, J., Johnson, K., Chen, H. J., Carroll, S. and Laughon, A. (1997). Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304-8.

    Kimura, N., Matsuo, R., Shibuya, H., Nakashima, K. and Taga, T. (2000). BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275, 17647-52.

    Knirr, S. and Frasch, M. (2001). Molecular integration of inductive and mesoderm-intrinsic inputs governs even-skipped enhancer activity in a subset of pericardial and dorsal muscle progenitors. Dev Biol 238, 13-26.

    Kuwabara, M., Takahashi, K. and Inanami, O. (2003). Induction of apoptosis through the activation of SAPK/JNK followed by the expression of death receptor Fas in X-irradiated cells. J Radiat Res (Tokyo) 44, 203-9.

    Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156-60.

    Lawrence, P. A., Bodmer, R. and Vincent, J. P. (1995). Segmental patterning of heart precursors in Drosophila. Development 121, 4303-8.

    Lee, H. H. and Frasch, M. (2000). Wingless effects mesoderm patterning and ectoderm segmentation events via induction of its downstream target sloppy paired. Development 127, 5497-508.

    Liu, J. and Lin, A. (2005). Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15, 36-42.

    Lockwood, W. K. and Bodmer, R. (2002). The patterns of wingless, decapentaplegic, and tinman position the Drosophila heart. Mech Dev 114, 13-26.

    Maduzia, L. L. and Padgett, R. W. (1997). Drosophila MAD, a member of the Smad family, translocates to the nucleus upon stimulation of the dpp pathway. Biochem Biophys Res Commun 238, 595-8.

    Maezawa, T., Arita, K., Shigenobu, S. and Kobayashi, S. (2009). Expression of the apoptosis inducer gene head involution defective in primordial germ cells of the Drosophila embryo requires eiger, p53, and loki function. Dev Growth Differ 51, 453-61.

    Manjon, C., Sanchez-Herrero, E. and Suzanne, M. (2007). Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9, 57-63.

    Massague, J., Attisano, L. and Wrana, J. L. (1994). The TGF-beta family and its composite receptors. Trends Cell Biol 4, 172-8.

    Moll, U. M., Wolff, S., Speidel, D. and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17, 631-6.

    Moll, U. M. and Zaika, A. (2001). Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493, 65-9.

    Moriguchi, T., Kuroyanagi, N., Yamaguchi, K., Gotoh, Y., Irie, K., Kano, T., Shirakabe, K., Muro, Y., Shibuya, H., Matsumoto, K. et al. (1996). A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J Biol Chem 271, 13675-9.

    Nellen, D., Affolter, M. and Basler, K. (1994). Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78, 225-37.

    Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. and Gelbart, W. M. (1996). Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells. Development 122, 2099-108.

    Noselli, S. (1998). JNK signaling and morphogenesis in Drosophila. Trends Genet 14, 33-8.

    Park, K. J., Lee, S. H., Lee, C. H., Jang, J. Y., Chung, J., Kwon, M. H. and Kim, Y. S. (2009). Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382, 726-9.

    Raftery, L. A. and Sutherland, D. J. (1999). TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 210, 251-68.

    Raftery, L. A., Twombly, V., Wharton, K. and Gelbart, W. M. (1995). Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241-54.

    Ramesh, S., Wildey, G. M. and Howe, P. H. (2009). Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell Cycle 8, 11-7.

    Reim, I. and Frasch, M. (2005). The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 132, 4911-25.

    Ruberte, E., Marty, T., Nellen, D., Affolter, M. and Basler, K. (1995). An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80, 889-97.

    Sang, T. K. and Ready, D. F. (2002). Eyes closed, a Drosophila p47 homolog, is essential for photoreceptor morphogenesis. Development 129, 143-54.

    Seger, R. and Krebs, E. G. (1995). The MAPK signaling cascade. FASEB J 9, 726-35.

    Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. and Gelbart, W. M. (1995). Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139, 1347-58.

    Sevrioukov, E. A., Burr, J., Huang, E. W., Assi, H. H., Monserrate, J. P., Purves, D. C., Wu, J. N., Song, E. J. and Brachmann, C. B. (2007). Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 45, 184-93.

    She, Q. B., Chen, N. and Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275, 20444-9.

    She, Q. B., Ma, W. Y. and Dong, Z. (2002). Role of MAP kinases in UVB-induced phosphorylation of p53 at serine 20. Oncogene 21, 1580-9.

    Shibuya, H., Iwata, H., Masuyama, N., Gotoh, Y., Yamaguchi, K., Irie, K., Matsumoto, K., Nishida, E. and Ueno, N. (1998). Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 17, 1019-28.

    Shirakabe, K., Yamaguchi, K., Shibuya, H., Irie, K., Matsuda, S., Moriguchi, T., Gotoh, Y., Matsumoto, K. and Nishida, E. (1997). TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 272, 8141-4.

    Takatsu, Y., Nakamura, M., Stapleton, M., Danos, M. C., Matsumoto, K., O'Connor, M. B., Shibuya, H. and Ueno, N. (2000). TAK1 participates in c-Jun N-terminal kinase signaling during Drosophila development. Mol Cell Biol 20, 3015-26.

    Tao, Y. and Schulz, R. A. (2007). Heart development in Drosophila. Semin Cell Dev Biol 18, 3-15.

    Wei, Y., Pattingre, S., Sinha, S., Bassik, M. and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30, 678-88.

    Wu, G. S. (2004). The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3, 156-61.

    Wu, X., Golden, K. and Bodmer, R. (1995). Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169, 619-28.

    Xu, X., Yin, Z., Hudson, J. B., Ferguson, E. L. and Frasch, M. (1998). Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev 12, 2354-70.

    Yamaguchi, K., Shirakabe, K., Shibuya, H., Irie, K., Oishi, I., Ueno, N., Taniguchi, T., Nishida, E. and Matsumoto, K. (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270, 2008-11.

    Yamashita, H., ten Dijke, P., Franzen, P., Miyazono, K. and Heldin, C. H. (1994). Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269, 20172-8.

    Yao, Z., Zhou, G., Wang, X. S., Brown, A., Diener, K., Gan, H. and Tan, T. H. (1999). A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 274, 2118-25.

    下載圖示
    QR CODE