研究生: |
張繻芳 Chang, Ju-Fang |
---|---|
論文名稱: |
ERA5與ERA_interim降水資料於中印半島地區的表現評估與表現差異原因探究 Evaluation of the performance of ERA5 and ERA_interim precipitation data in the Indochina Peninsula region and the reasons for the difference in performance |
指導教授: |
黃婉如
Huang, Wan-Ru |
口試委員: |
黃婉如
Huang, Wan-Ru 王重傑 Wang, Chung-Chieh 劉千義 Liu, Chian-Yi |
口試日期: | 2022/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 降水 、再分析資料 、ERA5 、ERA_interim 、中印半島 |
英文關鍵詞: | Precipitation, Reanalysis, ERA5, ERA_interim, Indochina Peninsula |
研究方法: | 比較研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202201432 |
論文種類: | 學術論文 |
相關次數: | 點閱:143 下載:27 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ERA5(ECMWF Reanalysis v5)是歐洲中期天氣預報中心(European Centre for Medium-Range Weather Forecasts;ECMWF)的第五代全球大氣再分析資料,近年ERA5逐漸取代ERA_interim(ECMWF Reanalysis - Interim)作為ECMWF主要的再分析資料,因此瞭解ERA5與ERA_interim資料的優缺點差異,有其必要性與重要性。本研究採用亞洲降水高解析度陸地觀測網格資料(Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation;APHRODITE v1901)作為降水的參考基準,以評估2000至2015年期間中印半島地區(100°E-110°E,8°N-24°N)ERA5與ERA_interim兩組再分析資料描繪四季降水的能力。此外,本研究亦透過環境場與降水類型的分析,進一步探討造成兩組再分析資料模擬降水差異的可能原因。
在降水時間分析方面,本研究針對年週期變化、四季之年際變化進行分析。研究結果顯示,在年週期變化方面,與ERA_interim相比,ERA5在年週期時間序列的相位變化與量值變化都與APHRODITE較為接近,因此估算年週期時間序列的表現優於ERA_interim,但ERA5和ERA_interim兩者皆存在高估降水的情況,ERA5高估降水的情況主要集中在6月至8月期間,ERA_interim高估降水的情況主要集中在1月至5月期間。在四季之年際變化方面,大多數的統計分析結果顯示,與ERA_interim相比,ERA5在四季中皆具有較高的相關係數,因此,ERA5四季降水的年際相位變化與APHRODITE較為接近。在降水空間分析方面,中印半島的四季降水在空間分布依季節變化而有所不同,在華南地區以及泰國、寮國、柬埔寨三國交界處等地勢平緩的區域,ERA5與ERA_interim描繪降水的能力較佳。而隨著降水強度的增加,ERA5與ERA_interim對降水掌握的能力降低。
另外在環境場空間分析方面,發現降水的分布與風場的輻合、輻散分布相關性高,降水偏高的位置多為風場輻合處。而ERA_interim降水較ERA5偏高的位置也可觀察到相對的風場輻合較強,顯示兩組再分析資料描繪降水的能力差異可能與其風場的表現差異有關。最後針對ERA5與ERA_interim的總降水、對流降水與大尺度降水的空間分析,發現兩組再分析資料的總降水差異在夏、秋兩季以對流降水為主導,在春、冬兩季則是對流降水與大尺度降水貢獻相當。
ERA5 (ECMWF Reanalysis v5) is the 5th generation of global atmospheric data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). In recent years, ERA5 is replacing the ERA_interim (ECMWF Reanalysis - Interim) as the ECMWF’s major reanalysis data. Thus, it is necessary and important to know the differences between ERA5 and ERA_interim. This study compares the capacities of ERA5 and ERA_interim in depicting seasonal precipitation variation in the Indochina Peninsula (100°E-110°E,8°N-24°N) from 2000 to 2015. The evaluation use the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE v1901) and the Integrated Multi-satellite Retrievals for GPM (IMERG V06) as the observational base. Additionally, this study also discusses the possible causes of differences between the ability of ERA5 and ERA_interim in depicting the precipitation variations, in a view of atmospheric circulation changes and precipitation type changes.
For the temporal precipitation changes, this study examines the annual cycle, the interannual rainfall variation for the four season. The analysis suggests that ERA5 performs more closer than ERA_interim to APHRODITE in terms of changes in phases and magnitudes of annual rainfall variation. However, both ERA5 and ERA_interim tend to overestimate precipitation, and the ERA5 mainly overestimates the June to August rainfall, while the ERA_interim mainly overestimates the January to May rainfall. As for the interannual variation of four season rainfall, most statistics suggest that ERA5 outperforms ERA_interim with a higher correlation coefficient. Thus, the interannual phase evolution of rainfall depicted by ERA5 is more closer than ERA_interim to APHRODITE. In terms of precipitation spatial analysis, the spatial distribution of seasonal precipitation in the Indo-China Peninsula varies according to the seasons. In southern China, the junction of Thailand and Laos, and other areas with gentle terrain, the ability of ERA5 and ERA_interim in depicting the precipitation is better than that over the high mountains. With the increase of precipitation intensity, the ability of ERA5 and ERA_interim to depict precipitation change decreases.
Regarding spatial analysis of the environmental field, it appears that the distribution of precipitation has a high correlation with the convergence of the wind field. Overall, locations with high precipitation are mostly at the convergence of the wind field. We found that where the precipitation of ERA_interim is being higher than that of ERA5, the relative wind field convergence tends to be stronger too. This implies that the differences between the precipitation of ERA5 and ERA_interim might be partly related to the differences between their related wind field. Finally, according to the spatial analysis of total precipitation, convective precipitation and large-scale precipitation of ERA5 and ERA_interim, it is found that the difference in total precipitation between ERA5 and ERA_interim is dominated by the difference in convective precipitation for summer and autumn. In contrast, for spring and winter, both the difference in convective precipitation and the difference in large-scale precipitation are important to the difference in total precipitation between ERA5 and ERA_interim.
Amjad, M., Yilmaz, M. T., Yucel, I., & Yilmaz, K. K. (2020). Performance evaluation of satellite-and model-based precipitation products over varying climate and complex topography. Journal of Hydrology, 584, 124707.
Andersson, E., Bauer, P., Beljaars, A., Chevallier, F., Hólm, E., Janisková, M., ... & Tompkins, A. M. (2005). Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bulletin of the American Meteorological Society, 86(3), 387-402.
Bao, X., & Zhang, F. (2013). Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 26(1), 206-214.
Battan, L. J., & Kassander, A. R. (1960). DESIGN OF A PROGRAM OF A RANDOMIZED SEEDING OF OROGRAPHIC CUMULI. Journal of the Atmospheric Sciences, 17(6), 583-590.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I., Weedon, G. P., ... & Wood, E. F. (2017). Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences, 21(12), 6201-6217.
Belo‐Pereira, M., Dutra, E., & Viterbo, P. (2011). Evaluation of global precipitation data sets over the Iberian Peninsula. Journal of Geophysical Research: Atmospheres, 116(D20).
Berg, A. A., Famiglietti, J. S., Walker, J. P., & Houser, P. R. (2003). Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. Journal of Geophysical Research: Atmospheres, 108(D16).
Berrisford, P., Dee, D. P. K. F., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., & Uppala, S. (2009). The ERA-interim archive. ERA Report Series, (1), 1-16.
Betts, A. K., Chan, D. Z., & Desjardins, R. L. (2019). Near-surface biases in ERA5 over the Canadian prairies. Frontiers in Environmental Science, 7, 129.
Chang, C. P., & Chen, G. T. (1995). Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Monthly Weather Review, 123(11), 3254-3267.
Chang, C. P., Wang, Z., McBride, J., & Liu, C. H. (2005). Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. Journal of Climate, 18(2), 287-301.
Cheang, B. K. (1987). Short-and long-range monsoon prediction in Southeast Asia. Monsoons, 579-606.
Chen, C. J., Senarath, S. U., Dima‐West, I. M., & Marcella, M. P. (2017). Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. International Journal of Climatology, 37(1), 180-196.
Chen, T. C., Tsay, J. D., Yen, M. C., & Matsumoto, J. (2012). Interannual variation of the late fall rainfall in central Vietnam. Journal of Climate, 25(1), 392-413.
Chen, T. C., Wang, S. Y., Huang, W. R., & Yen, M. C. (2004). Variation of the East Asian summer monsoon rainfall. Journal of Climate, 17(4), 744-762.
Cheng, C. P., & Houze Jr, R. A. (1979). The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Monthly Weather Review, 107(10), 1370-1381.
Dandridge, C., Lakshmi, V., Bolten, J., & Srinivasan, R. (2019). Evaluation of satellite-based rainfall estimates in the lower mekong river basin (southeast asia). Remote Sensing, 11(22), 2709.
Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., & Bosilovich, M. G. (2012). Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. Journal of Climate, 25(6), 1916-1944.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... & Vitart, F. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597.
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., ... & Wisser, D. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239-3244.
Fan, Y., & Van Den Dool, H. (2004). Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present. Journal of Geophysical Research: Atmospheres, 109(D10).
Gibson, J. K., Kallberg, P., Uppala, S., Hernandez, A., Nomura, A., & Serrano, E. (1997). ERA description. ECMWF Re-Analysis Project Report Series 1, ECMWF. Reading, United Kingdom, 72.
Gleixner, S., Demissie, T., & Diro, G. T. (2020). Did ERA5 improve temperature and precipitation reanalysis over East Africa?. Atmosphere, 11(9), 996.
Goldenbergl, S. B., Houze Jr, R. A., & Churchill, D. D. (1990). Convective and stratiform components of a winter monsoon cloud cluster determined from geosynchronous infrared satellite data. Journal of the Meteorological Society of Japan. Ser. II, 68(1), 37-63.
Hamada, A., Arakawa, O., & Yatagai, A. (2011). An automated quality control method for daily rain-gauge data. Global Environ. Res, 15(2), 183-192.
Hawkins, H. F., & Rosenthal, S. L. (1965). On the computation of stream functions from the wind field. Monthly Weather Review, 93(4), 245-252.
Hersbach, H. (2016, December). The ERA5 Atmospheric Reanalysis. In AGU Fall Meeting Abstracts (Vol. 2016, pp. NG33D-01).
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., ... & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Hersbach, H., & Dee, D. J. E. N. (2016). ERA5 reanalysis is in production. ECMWF Newsletter, 147(7), 5-6.
Hersbach, H., Peubey, C., Simmons, A., Poli, P., Dee, D., & Berrisford, P. (2018). ERA report series. URL: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim.
Hirons, L. C., Inness, P., Vitart, F., & Bechtold, P. (2013). Understanding advances in the simulation of intraseasonal variability in the ECMWF model. Part II: The application of process‐based diagnostics. Quarterly Journal of the Royal Meteorological Society, 139(675), 1427-1444.
Holton, J. R. (1973). An introduction to dynamic meteorology. American Journal of Physics, 41(5), 752-754.
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., ... & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701-722.
Houze Jr, R. A. (1997). Stratiform precipitation in regions of convection: A meteorological paradox?. Bulletin of the American Meteorological Society, 78(10), 2179-2196.
Huang, D. Q., Zhu, J., Zhang, Y. C., Huang, Y., & Kuang, X. Y. (2016). Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia. Quarterly Journal of the Royal Meteorological Society, 142(694), 108-119.
Huffman, G. (2019). IMERG V06 quality index.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., ... & Susskind, J. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2(1), 36-50.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K. L., Joyce, R. J., Kidd, C., ... & Xie, P. (2020). Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). In Satellite Precipitation Measurement (pp. 343-353). Springer, Cham.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Stocker, E. F., & Tan, J. (2019). V06 IMERG release notes. NASA/GSFC: Greenbelt, MD, USA.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2015). Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code, 612(47), 2019.
Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., & Raynaud, L. (2010). Ensemble of data assimilations at ECMWF.
Jiang, Q., Li, W., Fan, Z., He, X., Sun, W., Chen, S., ... & Wang, J. (2021). Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. Journal of Hydrology, 595, 125660.
Jin, Q., & Wang, C. (2017). A revival of Indian summer monsoon rainfall since 2002. Nature Climate Change, 7(8), 587-594.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437-472.
Kamiguchi, K., Arakawa, O., Kitoh, A., Yatagai, A., Hamada, A., & Yasutomi, N. (2010). Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years. Hydrological Research Letters, 4, 60-64.
Karnauskas, K. B., Ruiz-Barradas, A., Nigam, S., & Busalacchi, A. J. (2008). North American droughts in ERA-40 global and NCEP North American Regional Reanalyses: A Palmer drought severity index perspective. Journal of Climate, 21(10), 2102-2123.
Kidd, C., & Levizzani, V. (2011). Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15(4), 1109-1116.
Lovejoy, S., & Schertzer, D. (2018). The Weather and Climate: Emergent Laws and Multifractal Cascades. Cambridge University Press.
Mahto, S. S., & Mishra, V. (2019). Does ERA‐5 outperform other reanalysis products for hydrologic applications in India?. Journal of Geophysical Research: Atmospheres, 124(16), 9423-9441.
Marques, C. A., Rocha, A., Corte‐Real, J., Castanheira, J. M., Ferreira, J., & Melo‐Gonçalves, P. (2009). Global atmospheric energetics from NCEP–Reanalysis 2 and ECMWF–ERA40 Reanalysis. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(2), 159-174.
Mo, K. C., Long, L. N., Xia, Y., Yang, S. K., Schemm, J. E., & Ek, M. (2011). Drought indices based on the Climate Forecast System Reanalysis and ensemble NLDAS. Journal of Hydrometeorology, 12(2), 181-205.
Nasrollahi, N., Hsu, K., & Sorooshian, S. (2013). An artificial neural network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations. Journal of Hydrometeorology, 14(6), 1872-1883.
Nguyen, T. D., Uvo, C., & Rosbjerg, D. (2007). Relationship between the tropical Pacific and Indian Ocean sea‐surface temperature and monthly precipitation over the central highlands, Vietnam. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(11), 1439-1454.
Nie, S., Luo, Y., Wu, T., Shi, X., & Wang, Z. (2015). A merging scheme for constructing daily precipitation analyses based on objective bias‐correction and error estimation techniques. Journal of Geophysical Research: Atmospheres, 120(17), 8671-8692.
Nogueira, M. (2020). Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. Journal of Hydrology, 583, 124632.
Noska, R., & Misra, V. (2016). Characterizing the onset and demise of the Indian summer monsoon. Geophysical Research Letters, 43(9), 4547-4554.
Pascale, S., Lucarini, V., Feng, X., Porporato, A., & ul Hasson, S. (2015). Analysis of rainfall seasonality from observations and climate models. Climate Dynamics, 44(11-12), 3281-3301.
Pokhrel, S., & Sikka, D. R. (2013). Variability of the TRMM-PR total and convective and stratiform rain fractions over the Indian region during the summer monsoon. Climate Dynamics, 41(1), 21-44.
Qian, T., Dai, A., Trenberth, K. E., & Oleson, K. W. (2006). Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7(5), 953-975.
Rakhmatova, N., Arushanov, M., Shardakova, L., Nishonov, B., Taryannikova, R., Rakhmatova, V., & Belikov, D. A. (2021). Evaluation of the Perspective of ERA-Interim and ERA5 Reanalyses for Calculation of Drought Indicators for Uzbekistan. Atmosphere, 12(5), 527.
Rana, S., McGregor, J., & Renwick, J. (2015). Precipitation seasonality over the Indian subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals. Journal of Hydrometeorology, 16(2), 631-651.
Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8), 1606-1626.
Ropelewski, C. F., & Halpert, M. S. (1989). Precipitation patterns associated with the high index phase of the Southern Oscillation. Journal of Climate, 268-284.
Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-248.
Shah, R., & Mishra, V. (2014). Evaluation of the reanalysis products for the monsoon season droughts in India. Journal of Hydrometeorology, 15(4), 1575-1591.
Sheffield, J., Livneh, B., & Wood, E. F. (2012). Representation of terrestrial hydrology and large-scale drought of the continental United States from the North American Regional Reanalysis. Journal of Hydrometeorology, 13(3), 856-876.
Shen, X. Y., Liu, J., & Li, X. (2012). Evaluation of convective-stratiform rainfall separation schemes by precipitation and cloud statistics. Journal of Tropical Meteorology, 18(1), 98.
Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nature Climate Change, 4(6), 456-461.
Su, F. G., & Hao, Z. C. (2001). Review of land-surface hydrological processes parameterization. Advance in Earth Sciences, 16(6), 795-801.
Takahashi, H. G., & Yasunari, T. (2008). Decreasing trend in rainfall over Indochina during the late summer monsoon: Impact of tropical cyclones. Journal of the Meteorological Society of Japan. Ser. II, 86(3), 429-438.
Takahashi, H. G., Yoshikane, T., Hara, M., & Yasunari, T. (2009). High‐resolution regional climate simulations of the long‐term decrease in September rainfall over Indochina. Atmospheric Science Letters, 10(1), 14-18.
Tan, J., & Huffman, G. J. (2019). Computing Morphing Vectors for Version 06 IMERG. NASA/GSFC: Greenbelt, MD, USA.
Tang, Q., Durand, M., Lettenmaier, D. P., & Hong, Y. (2010). Satellite-based observations of hydrological processes. International Journal of Remote Sensing, 31(14), 3661-3667.
Tang, Q., Gao, H., Lu, H., & Lettenmaier, D. P. (2009). Remote sensing: hydrology. Progress in Physical Geography, 33(4), 490-509.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
Try, S., Lee, G., Yu, W., Oeurng, C., & Jang, C. (2018). Large-scale flood-inundation modeling in the Mekong River basin. Journal of Hydrologic Engineering, 23(7), 05018011.
Try, S., Tanaka, S., Tanaka, K., Sayama, T., Oeurng, C., Uk, S., ... & Han, D. (2020). Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. PLoS One, 15(1), e0226814.
Uppala, S. (1997). Observing System Performance in ERA. European Centre for Medium Range Weather Forecasts.
Uppala, S. A. K. A. R. I., Dee, D. I. C. K., Kobayashi, S. H. I. N. Y. A., Berrisford, P. A. U. L., & Simmons, A. D. R. I. A. N. (2008). Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, 115(7), 12-18.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., ... & Woollen, J. (2005). The ERA‐40 re‐analysis. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 131(612), 2961-3012.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., & Feyen, L. (2016). Projections of extreme storm surge levels along Europe. Climate Dynamics, 47(9), 3171-3190.
Wang, A., & Zeng, X. (2012). Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 117(D5).
Wilks, D. S. (1995). Statistical Methods in the Atmospheric Sciences: An Introduction. Academic press.
Willmott, C. J., Rowe, C. M., & Philpot, W. D. (1985). Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. The American Cartographer, 12(1), 5-16.
Wong, J. S., Razavi, S., Bonsal, B. R., Wheater, H. S., & Asong, Z. E. (2017). Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrology and Earth System Sciences, 21(4), 2163-2185.
Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., & Liu, C. (2007). A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8(3), 607-626.
Yasutomi, N., Hamada, A., & Yatagai, A. (2011). Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Global Environmental Research, 15(2), 165-172.
Yatagai, A., Arakawa, O., Kamiguchi, K., Kawamoto, H., Nodzu, M. I., & Hamada, A. (2009). A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Sola, 5, 137-140.
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., & Kitoh, A. (2012). APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93(9), 1401-1415.
Yatagai, A., Maeda, M., Khadgarai, S., Masuda, M., & Xie, P. (2020). End of the day (EOD) judgment for daily rain-gauge data. Atmosphere, 11(8), 772.
Yatagai, A., Xie, P., & Alpert, P. (2008). Development of a daily gridded precipitation data set for the Middle East. Advances in Geosciences, 12, 165-170.
Yen, M. C., Chen, T. C., Hu, H. L., Tzeng, R. Y., Dinh, D. T., Nguyen, T. T. T., & Wong, C. J. (2011). Interannual variation of the fall rainfall in Central Vietnam. Journal of the Meteorological Society of Japan. Ser. II, 89, 259-270.
Yen, M. C., Peng, C. M., Chen, T. C., Chen, C. S., Lin, N. H., Tzeng, R. Y., ... & Lin, C. C. (2013). Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment, 78, 35-50.
Yihui, D., & Chan, J. C. (2005). The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics, 89(1), 117-142.
Yong, B., Liu, D., Gourley, J. J., Tian, Y., Huffman, G. J., Ren, L., & Hong, Y. (2015). Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bulletin of the American Meteorological Society, 96(2), 283-296.
Zhu, H., Li, Y., Liu, Z., Shi, X., Fu, B., & Xing, Z. (2015). Using SWAT to simulate streamflow in Huifa River basin with ground and Fengyun precipitation data. Journal of Hydroinformatics, 17(5), 834-844.
Zhu, J., Huang, D. Q., Yan, P. W., Huang, Y., & Kuang, X. Y. (2017). Can reanalysis datasets describe the persistent temperature and precipitation extremes over China?. Theoretical and Applied Climatology, 130(1), 655-671.
劉品誼, & 黃婉如. (2020). 第五版 IMERG Early, Late 及 Final runs 衛星資料對 2014-2017 年期間臺灣暖季降雨特性的表現能力比對. 地理學報, (96), 1-26.