研究生: |
楊軒 Yang, Hsuan |
---|---|
論文名稱: |
基於時間序列、迴歸和正規化的快速預測PM2.5方法 A fast PM2.5 forecast approach based on time series data analysis, regression and regularization |
指導教授: |
陳伶志
Chen, Ling-Jyh |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | PM2.5 、空氣汙染 、線性迴歸 、正規化 、時間序列 、預測 |
英文關鍵詞: | PM2.5, Air Pollution, Linear Regression, Regularization, Time series, Forecast |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DCSIE.032.2018.B02 |
論文種類: | 學術論文 |
相關次數: | 點閱:230 下載:43 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著城市化和全球化的不斷推進,空氣污染已經成為一個全球性的問題。儘管研究人員一直在試圖找到解決空氣污染的辦法,但空氣汙染中還是有許多問題無法解決,因此透過資料科學進行預測達到預防空氣污染變成了自我保護的重要關鍵。
本研究透過了線性迴歸、正規化、時間序列以及布建在臺灣地區大量的PM2.5感測器預測未來五小時內的PM2.5數值,不同於其他多數預測方法參考了許多參數,我們只參考了PM2.5歷史資料這單一資料。透過上述的觀念我們設計了一項適定性迭代法 (Adaptive Iterative Forecast) 進行預測,能夠根據歷史資料的變化,快速預測出未來數小時PM2.5的數值。
整體研究致力的方向為更快速地建立出準確的預測模型,經由各種比較分析在最後的實驗結果中我們證實已達到了上述成果。我們也將整體研究成果建置成一套預測系統廣泛應用於全臺各地,讓使用者能透過預測出的結果進行個人空氣品質的防護作用。
Air pollution has become a global problem because of the continuous urbanization and globalization. Although, researchers have been trying to come up with solutions to tackle air pollution but still there are many loopholes that need be addressed to have an effective air pollution monitoring system. One way to tackle this problem by using - data science.
In this research, we use linear regression and regularization, to forecast the PM2.5 values for the next five hours using PM2.5 data obtained from large scale PM2.5 sensors deployment in Taiwan. Our method is a data centric method and we use historical PM2.5 data to do the forecast. In our work , we designed an Adaptive Iterative Forecast (AIF) method for forecasting, AIF can rapidly forecast the PM2.5 based on the changes in historical data.
The goal of the research is to develop efficient and accurate forecast models. Through various comparative analyses, we have proved that our model can achieve significant results. Based on the results, we have also built a forecasting system which is widely used throughout Taiwan. Such a system allows the users to stay aware of the air quality and plan their day to day life.
[1] Zhang, Y. L., & Cao, F. (2015). Fine particulate matter (PM 2.5) in China at a city level. Scientific Reports, 5, 14884.
[2] Atkinson, R. W., Ross Anderson, H., Sunyer, J., Ayres, J. O. N., BACCINI, M., VONK, J. M., ... & SCHWARTZ, J. (2001). Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. American journal of respiratory and critical care medicine, 164(10), 1860-1866.
[3] World Health Organization (2013) Health effects of particulate matter
[4] Wakamatsu, S., Morikawa, T., & Ito, A. (2013). Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures. Asian Journal of Atmospheric Environment, 7(4), 177-190.
[5] Pan, X., Li, G., & Gao, T. (2012). Dangerous breathing-PM2. 5: measuring the human health and economic impacts on China’s largest cities. Technical report, Greenpeace.
[6] State of the science fact sheet air quality. http://www.noaa.gov/ factsheets/new, September 2009
[7] Kusiak, A., Zheng, H., & Song, Z. (2009). Short-term prediction of wind farm power: a data mining approach. IEEE Transactions on energy conversion, 24(1), 125-136.
[8] Wu, C. H., Ho, J. M., & Lee, D. T. (2004). Travel-time prediction with support vector regression. IEEE transactions on intelligent transportation systems, 5(4), 276-281.
[9] Ding, A., Zhao, X., & Jiao, L. (2002). Traffic flow time series prediction based on statistics learning theory. In Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference on (pp. 727-730). IEEE.
[10] Izzah, A., Sari, Y. A., Widyastuti, R., & Cinderatama, T. A. (2017, November). Mobile app for stock prediction using Improved Multiple Linear Regression. In Sustainable Information Engineering and Technology (SIET), 2017 International Conference on (pp. 150-154). IEEE.
[11] Amral, N., Ozveren, C. S., & King, D. (2007, September). Short term load forecasting using multiple linear regression. In Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International (pp. 1192-1198). IEEE.
[12] Ganesh, S. S., Modali, S. H., Palreddy, S. R., & Arulmozhivarman, P. (2017, May). Forecasting air quality index using regression models: A case study on Delhi and Houston. In Trends in Electronics and Informatics (ICEI), 2017 International Conference on (pp. 248-254). IEEE.
[13] Tianlong, B., & Wentao, H. (2013, January). Traffic accident prediction based on time series linear mode. In Conference Anthology, IEEE (pp. 1-3). IEEE.
[14] Menon, S. P., Bharadwaj, R., Shetty, P., Sanu, P., & Nagendra, S. (2017, December). Prediction of temperature using linear regression. In Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017 International Conference on (pp. 1-6). IEEE.
[15] Zhao, C., van Heeswijk, M., & Karhunen, J. (2016, December). Air quality forecasting using neural networks. In Computational Intelligence (SSCI), 2016 IEEE Symposium Series on (pp. 1-7). IEEE.
[16] Huang, M., Zhang, T., Wang, J., & Zhu, L. (2015, September). A new air quality forecasting model using data mining and artificial neural network. In Software Engineering and Service Science (ICSESS), 2015 6th IEEE International Conference on (pp. 259-262). IEEE.
[17] Dedovic, M. M., Avdakovic, S., Turkovic, I., Dautbasic, N., & Konjic, T. (2016, October). Forecasting PM10 concentrations using neural networks and system for improving air quality. In Telecommunications (BIHTEL), 2016 XI International Symposium on (pp. 1-6). IEEE.
[18] Sharma, M., Aggarwal, S., Bose, P., & Deshpande, A. (2003, August). Meteorology-based forecasting of air quality index using neural network. In Industrial Informatics, 2003. INDIN 2003. Proceedings. IEEE International Conference on (pp. 374-378). IEEE.
[19] Wang, H., Wang, J., & Wang, X. (2017, July). An AQI Level Forecasting Model Using Chi-square Test and BP Neural Network. In Proceedings of the 2nd International Conference on Intelligent Information Processing (p. 24). ACM.
[20] Kingsy, G. R., Manimegalai, R., Geetha, D. M., Rajathi, S., Usha, K., & Raabiathul, B. N. (2016, November). Air pollution analysis using enhanced K-Means clustering algorithm for real time sensor data. In Region 10 Conference (TENCON), 2016 IEEE(pp. 1945-1949). IEEE.
[21] Huang, P., Zhang, J., Tang, Y., & Liu, L. (2015). Spatial and temporal distribution of PM2. 5 pollution in Xi’an City, China. International journal of environmental research and public health, 12(6), 6608-6625.
[22] Mahajan, S., Liu, H. M., Tsai, T. C., & Chen, L. J. (2018). Improving the Accuracy and Efficiency of PM2. 5 Forecast Service Using Cluster-based Hybrid Neural Network Model. IEEE Access.
[23] Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. springer.
[24] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
[25] Jeong, J. I., Park, R. J., Woo, J. H., Han, Y. J., & Yi, S. M. (2011). Source contributions to carbonaceous aerosol concentrations in Korea. Atmospheric environment, 45(5), 1116-1125.
[26] Guocai, Z. (2004). Progress of Weather Research and Forecast (WRF) Model and Application in the United States [J]. Meteorological Monthly, 12, 005.
[27] Zhang, C. Y., Chen, C. P., Gan, M., & Chen, L. (2015). Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Transactions on Sustainable Energy, 6(4), 1416-1425.
[28] Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23(22), 22408-22417.
[29] Zheng, Y., Liu, F., & Hsieh, H. P. (2013, August). U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1436-1444). ACM.
[30] Shi, X., Li, Q., Qi, Y., Huang, T., & Li, J. (2017, November). An accident prediction approach based on XGBoost. In Intelligent Systems and Knowledge Engineering (ISKE), 2017 12th International Conference on (pp. 1-7). IEEE.
[31] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM
[32] Zhu, J. Y., Zhang, C., Zhang, H., Zhi, S., Li, V. O., Han, J., & Zheng, Y. (2017). pg-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data. IEEE Transactions on Big Data.
[33] Groetsch, C. W. (1984). The theory of tikhonov regularization for fredholm equations. 104p, Boston Pitman Publication.1
[34] Carvalho, L., & Jones, C. (2016). Monsoons and climate change (1st ed., p. 9). Springer.
[35] Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L., ... & Yan, M. (2014). Using support vector regression to predict PM10 and PM2. 5. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012268). IOP Publishing.
[36] Saxena, A., & Shekhawat, S. (2017). Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine. Journal of environmental and public health, 2017.
[37] Stoimenova, M., Voynikova, D., Ivanov, A., Gocheva-Ilieva, S., & Iliev, I. (2017, October). Regression trees modeling and forecasting of PM10 air pollution in urban areas. In AIP Conference Proceedings (Vol. 1895, No. 1, p. 030005). AIP Publishing.