簡易檢索 / 詳目顯示

研究生: 蔡沛昌
Tsai pei-chang
論文名稱: 高濃度鋅掺雜於鈮酸鋰晶體之缺陷結構研究
Study of defect structure of highly Zn doped LiNbO3 single crystal
指導教授: 賈至達
Chia, Chih-Ta
林聖賢
Lin, Sheng-Hsien
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 92
中文關鍵詞: 鈮酸鋰晶體缺陷結構OH¯吸收振動模高濃度鋅摻雜
英文關鍵詞: vacancy structure, OH─ absorption mode, IFEFFIT EXAFS analysis fitting, hybrid density functional theory
論文種類: 學術論文
相關次數: 點閱:240下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了研究鈮酸鋰晶體缺陷的結構,我們準備了不同鋅摻雜濃度的鈮酸鋰晶體樣品,並運用Extended X-ray Absorption Fine Structure (EXAFS), Fourier Transformation Infrared Ray (FTIR), Proton Exchange (PE), Thermal Effect (TH),以及Coercive Field (CF)的實驗量測進一步對此課題作探討。 從室溫EXAFS的實驗量測中,我們觀察到以Zn及Nb為中心的吸收光譜並沒有明顯的改變,這的確顯示隨著高濃度鋅摻雜的鈮酸鋰晶體中,鋅仍取代鋰原子的位子。 另外從PE FTIR一系列的實驗中,我們觀測到在低濃度鋅摻雜的鈮酸鋰晶體中,PE的貢獻會使3467 cm─1,3485 cm─1以及3505 cm─1的OH¯吸收振動模數量增加,這對應了鋰缺陷的模型。 但是在高濃度鋅摻雜的鈮酸鋰晶體中,PE的貢獻只會使3467 cm─1以及3505 cm─1的OH¯吸收振動模增加,但對於3530 cm─1的OH¯吸收振動模則不產生影響,這對應了不同缺陷模型存在的結果。 而TH的實驗中我們了解到高濃度鋅摻雜的鈮酸鋰晶體中OH¯吸收振動模的數量小於零摻雜的結果,這說明了高濃度鋅摻雜的鈮酸鋰晶體結構較為緊密,此現象跟X-ray Diffraction在高濃度鋅摻雜的結果吻合。 另外在CF的實驗結果中,我們解釋了高濃度鋅摻雜的鈮酸鋰晶體在CF作用,並搭配鈮缺陷的模型配合下,ZnLi+原子的移動情況。 在Gaussian 03的理論擬合結果中,我們計算出3485 cm─1主要對應了鋰缺陷附近的OH¯吸收振動模,而3530 cm─1的OH¯吸收振動模位於鈮缺陷附近。 最後综合所有實驗結果,我們提出高濃度鋅摻雜的鈮酸鋰晶體中存在鈮缺陷的模型,而此鋅摻雜的濃度需高於7.5 mol %以上。

    In order to determine the defect structure of ZnO-doped LiNbO3 single crystals, EXAFS, FTIR, Proton Exchange, Thermal Effect, and Coercive Field experiments were used to target this subject. The calculation of hybrid density functional theory OH─ absorption mode and IFEFFIT EXAFS analysis fitting were also included. From the Extended X-ray Absorption Fine Structure (EXAFS) measurement at room temperature, we find that there is no obvious difference between Zn and Nb core in EXAFS spectra, implying that doped Zn atom is substituted directly on the Li site of LiNbO3 crystal after Zn-doping. An investigation of the OH¯ absorption spectra of Zn-doped LiNbO3 single crystals after proton exchange (PE) is carried out. Before PE treatment, the absorption bands are found centered at approximately 3485 cm─1 below 7.5 mol % concentrations, whereas two distinct bands at 3505 and 3530 cm─1 are clearly observed above 7.5 mol %. After PE treatment, an absorption band at 3505 cm─1 is predominant for all the samples, and this is attributed to the high concentration of H+ ions substituting Li atoms. For highly Zn-doped samples, the lineshape and intensity of the 3530 cm─1 mode remain the same during PE. From Coercive Field (CF) measurement, large numbers of ZnLi+atoms of highly Zn-doped samples were moved leading to change OH¯ spectra nearby Nb vacancy structure. For lower doping samples, only fewer NbLi4+ atoms can move, so lower intensities of the OH¯ absorption areas was shown. A theoretical investigation using the hybrid density functional B3LYP method with a simple cluster structure shows that the origins of the 3485 and 3530 cm─1 absorption modes correspond to the Li- and Nb-vacancy models. IFEFFIT EXAFS simulation by way of analyzing the ZnNb scattering amplitudes also shows that the Zn atom does not substitute the Nb site at highly Zn-doped LiNbO3 single crystals. Based on the summary of our experiments, we propose the VNb5─ model for highly doping Zn-doped LiNbO3. This model is in agreement with the calculation of hybrid density functional theory OH¯ absorption mode and IFEFFIT EXAFS analysis fitting. The Nb vacancies should be considered to be an essential factor in influencing the physical properties of Zn-doped LiNbO3 at levels above 7.5 mol % doping concentration.

    CHAPTER CATALOG: Chapter 1: Defect model of LiNbO3 1 1.1 Introduction……………………………………………………………………..1 1.2 Physical properties and defect model of Zn doped LiNbO3 single crystal……..5 Chapter 2: FTIR OH¯ absorption mode measurement 12 2.1 Fourier Transform Infrared Spectroscopy (FTIR) measurement………………12 2.2 FTIR experimental result and OH¯ absorption mode fitting…………………..16 2.3 Discussion of experiment and fitting result……………………………………20 Chapter 3: PE OH¯ absorption mode investigation 24 3.1 Time dependent Proton Exchange (PE) experimental measurement…………..24 3.2 Time dependent OH¯ absorption mode fitting………………………………...30 3.3 OH¯ absorption mode corresponding to PE process…………………………..36 Chapter 4: OH¯ absorption mode with CF treatment 39 4.1 Coercive Field (CF) experimental measurement………………………………39 4.2 Proton Exchange and Thermal Effect after CF treatment……………………...41 4.3 Time dependent OH¯ absorption mode relation to CF process………………..47 Chapter 5: EXAFS experiment and IFEFFIT fitting 55 5.1 Extended X-ray Absorption Fine Structure (EXAFS) measurement………….55 5.2 EXAFS experimental result……………………………………………………57 5.3 Discussion of EXAFS experiment and IFEFFIT fitting……………………….59 Chapter 6 Theoretical calculations 71 Theoretical calculation of OH¯ absorption mode with Li and Nb vacancy model..71 Conclusion 78 FIGURES CATALOGS: Chapter 1 Fig. 1-1: Li, Nb, and Nb2O5 vacancy models of congruent LiNbO3 single crystal...2 Fig. 1-2: Schematic diagram of LiNbO3 crystal structure with Ferroelectric and Paraelectric phases……………………………………………………….6 Fig. 1-3: Nb vacancy model crystal structure for highly Zn doping concentrations.7 Chapter 2 Fig. 2-1: FTIR experiment layout and transformation spectrum………………….12 Fig. 2-2: Vibration bonding related with wave length…………………………….14 Fig. 2-3: OH¯ absorption spectra of Zn-doped LiNbO3 with Zn-doping concentrations from 0 to 8.3 mol %.........................................................16 Fig. 2-4: OH¯ absorption mode fitting result with different Zn-doping concentrations…………………………………………………………...18 Chapter 3 Fig. 3-1: OH¯ absorption spectra with Zn-doping concentrations from 0 to 8.3 mol % after PE treatment for 100 min, (obtained from ratio of spectra of after-PE -treatment and before-PE-treatment samples)............................25 Fig. 3-2: OH¯ absorption spectra of highly Zn-doped LiNbO3 (8.1 mol %) as function of PE time……………………………………………………..26 Fig. 3-3: PE effect on Zn-doped LiNbO3 with (a) 0, (b) 7.5, and (c) 8.3 mol % doping concentrations. (The dash line showed the sample without PE effect, and the solid line demonstrated after/before PE result, and the arrow point out the increase of OH¯ absorption mode after PE effect.)..29 Fig. 3-4: OH¯ absorption mode after/before PE for 100 min fitting results with different Zn doping concentrations……………………………………..31 Chapter 4 Fig. 4-1: Time-dependent PE OH¯ absorption spectra with intensity presentation of congruent LiNbO3 without (a)-(b) and with (c)-(d) the CF treatment….42 Fig. 4-2: Time-dependent PE OH¯ absorption spectra with intensity presentation of 8.1 mol % Zn-doped LiNbO3 without (a)-(b) and with (c)-(d) the CF Treatment……………………………………………………………….44 Fig. 4-3: TH, CF, and PE effects with OH¯ absorption areas of congruent and 8.1 mol % Zn-doped LiNbO3 single crystals……………………………….49 Fig. 4-4: Complex analyzed CF treatment of (a) congruent and (b) 8.1 mol % Zn-doped LiNbO3 single crystals……………………………………….50 Chapter 5 Fig. 5-1: (XANES) and (EXAFS) x-ray absorption characteristic spectra……….56 Fig. 5-2: X-ray absorption measurement layout…………………………………..57 Fig. 5-3: (a) shows the Zn K-edge Fourier transform (FT) magnitude of the k-weighted EXAFS signal and (b) shows the Nb K-edge signal……….58 Fig. 5-4(a): Zn core Fourier transform as function of distance with IFEFFIT optimized fitting, [k2(k)]………………………………………………60 Fig. 5-4(b): Nb core Fourier transform as function of distance with IFEFFIT optimized fitting, [k2(k)]……………………………………………….60 Fig. 5-5: Complex analyzed crystal structure of Nb core EXAFS spectra of highly Zn doped LiNbO3……………………………………………………….67 Chapter 6 Fig. 6-1: The OH¯ absorption mode calculation with Li-vacancy model………..73 Fig. 6-2 (a)-(e): The possible combinations of Zn-OH absorption mode calculations with Nb-vacancy model………………………………………………..74 Fig. 6-3: The highly concentrations of Zn-doped LiNbO3 single crystal OH¯ absorption mode calculation with Nb-vacancy model…………………75 TABLES CATALOGS: Table 2-1: IR crystal and windows materials……………………………………..13 Table 2-2: OH¯ absorption mode fitting result…………………………………...19 Table 3-1: Time dependent OH¯ absorption mode after/before PE fitting results..32 Table 3-2: OH¯ absorption mode after/before PE for 100 min fitting results……35 Table 4-1: The congruent LiNbO3 single crystal polarization inversion calculations…………………………………………………………….43 Table 4-2: Time-dependent TH, CF, and PE effects with OH¯ absorption mode fitting results of congruent and 8.1 mol % Zn-doped LiNbO3 single crystals…………………………………………………………………45 Table 4-3: Time dependent TH, CF, and PE effects with OH¯ absorption areas of congruent and 8.1 mol % Zn-doped LiNbO3 single crystals…………..48 Table 5-1: The bond distances of Zn core EXAFS spectra, in (Å)……………….62 Table 5-2: The scattering amplitudes of Zn core EXAFS spectra, in (Å)………...63 Table 5-3: The bond distances of Nb core EXAFS spectra, in (Å)……………….64 Table 5-4: The scattering amplitudes of Nb core EXAFS spectra, in (Å)………..65

    References of Chap. 1:
    [1] L. Hesselink and S. S. Orlov, “Gated Optical Recording for Nonvolatile Holography in Photorefractive Materials”, Infrared Holography for Optical Communications, Springer, Berlin (2003).
    [2] A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique”, Journal of the American Ceramic Society. 48, 112 (1965).
    [3] P. Lerner, C. Legras, and J. P. Duman, ” Growth and Photorefractive Properties of Stoichiometric LiNbO3 and LiTaO3”, J. Crystal Growth 3/4, 231 (1968).
    [4] R. L. Byer, J. F. Young, and F. S. Feigelson, “Growth of High-Quality LiNbO3 Crystals from the Congruent Melt”, J. Appl. Phys. 41, 2320 (1970).
    [5] G. E. Peterson and A. Carnevale, “93Nb NMR Linewidths in Nonstoichiometric Lithium Niobate”, J. Chem. Phys 56, 4848 (1972).
    [6] H. Fay, W. J. Alford, and H. M. Dess, “Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition”, Appl. Phys. Lett. 12, 89 (1968).
    [7] C. Leroux, G. Nihoul, and G. Malovichko, “Investigation of correlated defects in non-stoichiometric lithium niobate by high resolution electron microscopy”, J. Phys. Chem. Solids 59, 311 (1998).
    [8] N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions”, J. Sol. State Chem. 101, 340 (1992).
    [9] A. P. Wilkinson and A. K. Cheetham, “The defect structure of congruently melting lithium niobate”, J. Appl. Phys. 74, 3080 (1993).
    [10] N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction”, J. Phys. Chem. Solids 55, 145 (1994).
    [11] T. Volk, B. Maximov, and S. Sulyanov, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals”, Opt. Mater. 23, 229 (2003).
    [12] S. Sulyanov, B. Maximov, and T. Volk, “Neutron and X-ray study of stoichiometric and doped LiNbO3:Zn0.08”, Appl. Phys. A74, S1031 (2002).
    [13] T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wöhlecke, and V. Simonov, “Photorefractive properties of LiNbO3:Zn crystals related to the defect structure”, Appl. Phys. B72, 647 (2001).
    [14] D. Xue, K. Kitamura, “Crystallographic modifications of physical properties of lithium niobate crystals by the cation location”, J. Crystal Growth 249, 507 (2003).
    [15] M. L. Hu, C. T. Chia, J. Y. Chang, W. S. Tse, and J. T. Yu, “Low-temperature Raman study of zinc-doped lithium niobate crystal powders”, Mater. Chem. Phys. 78, 358 (2002).
    [16] F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals”, Appl. Phys. B68, 795 (1999).
    [17] T. S. Chernaya, B. A. Maksimov, T. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals”, JETP Letters 73, 103 (2001).
    [18] Chih-Ta Chia, Chia-Chi Lee, and Pi-Jung Chang, “Substitution mechanism of ZnO-doped lithium niobate crystal determined by powder x-ray diffraction and coercive field”, Appl. Phys. Lett. 86, 182901 (2005).
    [19] L. Zhao, X. Wang, and B. Wang, “ZnO-doped LiNbO3 single crystals studied by X-ray and density measurements”, Appl. Phys. B78, 769 (2004).
    [20] D. Xue and X. He, “Dopant occupancy and structural stability of doped lithium niobate crystals”, Physical Review B73, 064113 (2006).
    [21] C. Prieto and C. Zaldo, “Evidence of the lattice site change of Hf impurity from Hf-doped to Hf:Mg-codoped LiNbO3 single crystals by extended X-ray absorption fine-structure spectroscopy”, J. Phys. Condens. Matter 6, L677 (1994).
    [22] C. Prieto, C. Zaldo, H. Dexpert, and P. Fessler, “Study of the lattice sites of Ti and Ni impurities in LiNbO3 single crystals, by means of X-ray absorption spectroscopy”, J. Phys. Condens. Matter 3, 4135 (1991).
    [23] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3”, Appl. Phys. Lett. 41, 607 (1982).
    [24] J. M. D. Leon, J. J. Rehr, and S. I Zabinsky, ”Ab initio curved-wave x-ray-absorption fine structure”, Phys. Rev. B44, 4146 (1991).
    [25] Liang Sun, Jia Wang, Qiang Lv, and Baoquan Liu, “Defect structure and optical damage resistance of In:Mg:Fe:LiNbO3 crystals with various Li/Nb ratios”, J. Crystal Growth 297, 199 (2006).
    [26] S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1200°C”, Journal of Physics and Chemistry of Solids 27, 1019 (1966).
    [27] U. Schlarb, M. Wöhlecke, B. Gather, A. Reichert, K. Betzler, T. Volk, and N. Rubinina, “Refractive indices of Zn-doped lithium niobate”, Optical Materials 4, 791 (1995).
    [28] Pei-Chang Tsai, Hsin-Feng Lu, Pi-Jung Chang, and Chih-Ta Chia, “OH─ Absorption of Zn-Doped LiNbO3 Single Crystals after Proton Exchange”, Jpn. J. Appl. Phys. 46, 7159 (2007).
    [29] Pei-Chang Tsai, Mei-Lan Sun, Chih-Ta Chia, and Hsin-Feng Lu, “Defect structure of highly Zn-doped LiNbO3 single crystal revealed by extended x-ray absorption spectra”, Appl. Phys. Lett. 92, 161902 (2008).

    References of Chap. 2:
    [1] L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive Materials for Nonvolatile Volume Holographic Data Storage”, Science 282, 1089 (1998).
    [2] D. Xue and K. Kitamura, “Crystallographic modifications of physical properties of lithium niobate crystals by the cation location”, J. Cryst. Growth 249, 507 (2003).
    [3] W. Bollmann and H. J. stohr, “Incorporation and mobility of OH─ ions in LiNbO3 crystals”, Physica Status Solidi (a) 39, 477 (1977).
    [4] Ma. J. D. Rosendo, L. Arizmendi, J. M. Cabrera, and F. A. Lopez, “Incorporation of H+ into Mg-doped LiNbO3”, Stat. Solid Communications 59, 499 (1986).
    [5] L. Kovacs, L. Rebouta, J. C. Soares, and M. F. D. Silva, “Lattice site of Er in LiNbO3:Mg, Er crystals”, Crystal Lattice defects and Amorphous materials 15, 115 (1987).
    [6] M. K. Kuneva, S. H. Tonchev, M. S. Vasileva, D. D. Malinovska, and P. A. Atanasov, ”IR-spectra of waveguides in LiNbO3 obtained by using different melts”, Sensors and Actuators A: Physical 99, 154 (2002).
    [7] L. Kovacs, M. Wohlecke, A. Jovanovi, K. Polgar, and S. Kapphan, “Infrared absorption study of the OH vibrational band in LiNbO3 crystals”, Journal of Phys. and Chem. of Solids 52, 797 (1991).
    [8] R. Muller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing”, Appl. Phys. Lett. 60, 3212 (1992).
    [9] Michelson, “The relative motion of the Earth and the luminiferous ether”, American Journal of Science 22, 120 (1881).
    [10] G. Bhagavannarayana, R. V. Ananthamurthy, G. C. Budakoti, B. Kumar and K. S. Bartwal, “A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR”, J. Appl. Cryst. 38, 768 (2005).
    [11] J. R. Herrington, B. Dischler, A. Räuber, and J. Schneider, “An optical study of the stretching absorption band near 3 microns from OH─ defects in LiNbO3”, Stat. Solid Communications 12, 351 (1973).
    [12] H. Vormann, G. Weber, S. Kapphan, and E. Kratzig, ’’Hydrogen as origin of thermal fixing in LiNbO3: Fe“, Stat. Solid Communications 40, 543 (1981).
    [13] A. Forster, S. Kapphan, M. Wohlecke Forster, Kapphan, and Wohlecke, “Overtone Spectroscopy of the OH and OD Stretch Modes in LiNbO3”, Physica Status Solidi (b) 143, 755 (1987).
    [14] L. Kovacs, Zs. Szaller, I. Cravero, I. Foldvari, and C. Zaldo, “OH-related defects in LiNbO3:Mg, M (M = Nd, Cr, Ti, Mn) crystals”, Journal of Phys. and Chem. of Solids 51, 417 (1990).
    [15] A. Grone and S. Kapphan, “Higher vibrational states of OH/OD in the bulk of congruent LiNbO3 and in proton/deuteron exchanged layers at the surface of LiNbO3”, Journal of Phys.: Condensed Matter 7, 6393 (1995).
    [16] P. G. Johannsen, “Vibrational states and optical transitions in hydrogen bonds”, Journal of Phys.: Condensed Matter 10, 2241 (1998).
    [17] Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, “OH─ absorption spectra of pure lithium niobate crystals”, Journal of Phys.: Condensed Matter 11, 2139 (1999).
    [18] Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, “The OH─ absorption spectra of low doped lithium niobate crystals”, Infrared Physics and Technology 45, 281 (2004).
    [19] Z. Li, T. Yu, and Z. Zou, “Degradation in photocatalytic activity induced by hydrogen-related defects in nano-LiNbO3 material”, Appl. Phys. Lett. 88, 071917 (2006).
    [20] Chih-Ta Chia, Mei-Lan Sun, and Ming-Li Hu, “Room-Temperature A1(TO) and OH─ Absorption Spectra of Zn-Doped Lithium Niobate Crystals”, Jpn. J. Appl. Phys. 42, 6234 (2003).
    [21] Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, “Growth and properties of Zn doped lithium niobate crystal”, J. Cryst. Growth 233, 537 (2001).
    [22] Chih-Ta Chia, Chia-Chi Lee, and Pi-Jung Chang, “Substitution mechanism of ZnO-doped lithium niobate crystal determined by powder x-ray diffraction and coercive field”, Appl. Phys. Lett. 86, 182901 (2005).

    References of Chap. 3:
    [1] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3”, Appl. Phys. Lett. 41, 607 (1982).
    [2] J. L. Jackel and C. E. Rice, “Topotactic LiNbO3 to cubic perovskite structural transformation in LiNbO3 and LiTaO3”, Ferroelectrics 38, 801 (1981).
    [3] C. Retzon and C. S. Tsai, “Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator”, Optics Letters 11, 546 (1982).
    [4] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. D. L. Rue, “Characterization of proton-exchange slab optical waveguides in z-cut LiNbO3”, Journal of Applied Physics. 54, 6218 (1983).
    [5] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides”, Appl. Phys. Lett. 42, 633 (1983).
    [6] R. A. Becker, “Comparison of guided-wave interferometric modulators fabricated on LiNbO3 via Ti indiffusion and proton exchange”, Appl. Phys. Lett. 43, 131 (1983).
    [7] C. Canali and A. Carnera, “Structural characterization of proton exchanged LiNbO3 optical waveguides”, J. Appl. Phys. 59, 2643 (1986).
    [8] R. G. Wilson and S. W. Novak, “Secondary ion mass spectrometry depth profiling of proton-exchanged LiNbO3 waveguides”, J. Appl. Phys. 66, 6055 (1989).
    [9] Y. X. Chen, W. S. C. Chang, and S. S. Lau, “Characterization of LiNbO3 waveguides exchanged in TlNO3 solution”, Appl. Phys. Lett. 40, 10 (1982).
    [10] C. E. Rice, “HNbO3 and HTaO3: New cubic perovskites prepared from LiNbO3 and LiTaO3 via ion exchange”, Journal of Solid State Chemistry 41, 308 (1982).
    [11] M. L. Shah, “Optical waveguides in LiNbO3 by ion exchange technique”, Appl. Phys. Lett. 26, 652 (1975).
    [12] J. Jackel, “High- n optical waveguides in LiNbO3: Thallium-lithium ion exchange”, Appl. Phys. Lett. 37, 739 (1980).
    [13] W. Yan, Y. Kong, L. Shi, X. Xie, and X. Li, “The H+ related defects in near-stoichiometric lithium niobate crystals investigated by domain reversal”, Physica status solidi (a) 201, 2013 (2004).
    [14] Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura and S. Kimura, ” Defect structures in LiNbO3”, Journal of Physics Condensed Matter 7, 3627 (1995).
    [15] H. H. Nahm and C. H. Park, “Microscopic structure of hydrogen impurity in LiNbO3”, Appl. Phys. Lett. 78, 3812 (2001).
    [16] S. C. Abrahams, “Defect structure dependence on composition in lithium niobate”, Acta Crystallographica Section B, 42, 61 (1986).
    [17] H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer,
    “Computer-simulation studies of extrinsic defects in LiNbO3 crystals”, Physical Review B 44, 4877 (1991).
    [18] N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, ”Defect Structure Model of MgO-Doped LiNbO3”, Journal of Solid State Chemistry 118, 148 (1995).
    [19] T. Volk, M. Wöhlecke, and N. Rubinina, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate”, Ferroelectrics 183, 291 (1996).
    [20] N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, “Comparative study of defect structures in lithium niobate with different compositions”, Journal of Solid State Chemistry 101, 340 (1992).

    References of Chap. 4:
    [1] Y. Y. Lin, S. T. Lin, G. W. Chiang, and Y. C. Huang, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch”, Opt. Lett. 32, 545 (2007).
    [2] V. Bermudez, L. Huang, D. Hui, and S. Field, “Role of stoichiometric point defect in electric-field-poling lithium niobate”, Appl. Phys. A 70, 591 (2000).
    [3] Q. X. Xi, D. A. Liu, and Y. N. Zhi, “Reversible electrochromic effect accompanying domain-inversion in LiNbO3:Ru:Fe crystals”, Appl. Phys. Lett. 87, 121103 (2005).
    [4] M. C. Wengler, U. Heinemeyer, and E. Soergel, “Ultraviolet light-assisted domain inversion in magnesium-doped lithium niobate crystals”, J. Appl. Phys. 98, 064104 (2005).
    [5] U. Heinemeyer, M. C. Wengler, and K. Buse, “Annihilation of the OH absorption due to domain inversion in MgO-doped lithium niobate crystals”, Appl. Phys. Lett. 89, 112910 (2006).
    [6] N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S.Kimura, “Comparative study of defect structures in lithium niobate with different compositions”, J. Solid State Chem. 101, 340 (1992).
    [7] T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wöhlecke, and V. Simonov, “Photorefractive properties of LiNbO3:Zn crystals related to the defect structure”, Appl. Phys. B 72, 647 (2001).
    [8] S. Sulyanov, B. Maximov, and T. Volk, “Neutron and X-ray study of stoichiometric and doped LiNbO3:Zn0.08”, Appl. Phys. A 74, S1031 (2002).
    [9] T. S. Chernaya, B. A. Maksimov, T. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals”, JETP Letters 73, 103 (2001).
    [10] M. L. Hu, C. T. Chia, J. Y. Chang, W. S. Tse, and J. T. Yu, “Low-temperature Raman study of zinc-doped lithium niobate crystal powders”, Mater. Chem. Phys. 78, 358-362 (2002).
    [11] Chih-Ta Chia, Mei-Lan Sun, and Ming-Li Hu, “Room-Temperature A1(TO) and OH─ Absorption Spectra of Zn-Doped Lithium Niobate Crystals”, Jpn. J. Appl. Phys. 42, 6234 (2003).
    [12] Chih-Ta Chia, Chia-Chi Lee, and Pi-Jung Chang, “Substitution mechanism of ZnO-doped lithium niobate crystal determined by powder x-ray diffraction and coercive field”, Appl. Phys. Lett. 86, 182901 (2005).
    [13] Pei-Chang Tsai, Hsin-Feng Lu, Pi-Jung Chang, and Chih-Ta Chia, “OH─ Absorption of Zn-Doped LiNbO3 Single Crystals after Proton Exchange”, Jpn. J. Appl. Phys. 46, 7159 (2007).
    [14] Pei-Chang Tsai, Mei-Lan Sun, Chih-Ta Chia, and Hsin-Feng Lu, “Defect structure of highly Zn-doped LiNbO3 single crystal revealed by extended x-ray absorption spectra”, Appl. Phys. Lett. 92, 161902 (2008)
    [15] L. E. Meyer, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3”, J. Opt. Soc. Am. B 12, 2102 (1995).
    [16] U. Schlarb, M. Wöhlecke, B. Gather, A. Reichert, K. Betzler, T. Volk, and N. Rubinina, “Refractive indices of Zn-doped lithium niobate”, Optical Materials 4, 791 (1995).
    [17] W. Yan and Y. Kong, “The H+ related defects in near-stoichiometric lithium niobate crystals investigated by domain reversal”, Phys. Status Solidi A 201, 2013 (2004).
    [18] T. Volk, B. Maximov, and S. Sulyanov, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals”, Opt. Mater. 23, 229 (2003).
    [19] V. Gopalan and M. C. Gupta, “Origin and characteristics of internal fields in LiNbO3 crystals”, Ferroelectrics 198, 49 (1997).
    [20] V. Gopalan and C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals”, J. Appl. Phys. 80, 6099 (1996).

    References of Chap. 5:
    [1] H. D. Megaw, “Ferroelectricity and crystal structure. II”, Acta Crystallogr. 7, 187 (1954).
    [2] Y. Shiozaki and T. Mitsui, “Powder neutron diffraction study of LiNbO3”, J. Phys. Chem. Solids 24, 1057 (1963).
    [3] S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24°C”, J. Phys. Chem. Solids 27, 997 (1966).
    [4] J. R. Carruthers, G. E. Peterson, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate”, J. Appl. Phys. 42, 1846 (1971).
    [5] K. Nassau and M. E. Lines, “Stacking-Fault Model for Stoichiometry Deviations in LiNbO3 and LiTaO3 and the Effect on the Curie Temperature”, J. Appl. Phys. 41, 533 (1970).
    [6] P. K. Gallagher and H. M. O’Bryan, “Characterization of LiNbO3 by Dilatometry and DTA”, J. Am. Ceram. Soc. 68, 147 (1985).
    [7] T. Volk, M. Woehlecke, and N. Rubinina, “Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate”, Ferroelectrics 183, 291(1996).
    [8] T. Volk, B. Maximov, and S. Sulyanov, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals”, Opt. Mater. 23, 229 (2003).
    [9] T. S. Chernaya, T. Volk, I. A. Verin, and V. I. Simonov, “Threshold concentrations in zinc-doped lithium niobate crystals and their structural conditionality”, Crystallography Report 53, 573 (2008).
    [10] K. Singh and D. K. Bopardikar, “Relation between transition temperature, atomic displacement and spontaneous strain with special reference to structural symmetry”, Ferroelectrics 61, 281 (1984).
    [11] C. Prieto and C. Zaldo, J. Phys, “Evidence of the lattice site change of Hf impurity from Hf-doped to Hf:Mg-codoped LiNbO3 single crystals by extended X-ray absorption fine-structure spectroscopy”, Condens. Matter 6, L677 (1994).
    [12] C. Prieto, C. Zaldo, H. Dexpert, and P. Fessler, “Study of the lattice sites of Ti and Ni impurities in LiNbO3 single crystals, by means of X-ray absorption spectroscopy”, J. Phys. Condens. Matter 3, 4135 (1991).
    [13] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3”, Appl. Phys. Lett. 41, 607 (1982).
    [14] J. M. D. Leon, J. J. Rehr, and S. I. Zabinsky, ” Ab initio curved-wave x-ray-absorption fine structure”, Phys. Rev. B 44, 4146 (1991).
    [15] F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals”, Appl. Phys. B68, 795 (1999).
    [16] T. S. Chernaya, B. A. Maksimov, T. R. Volk, N. M. Rubinina, and V. I. Simonov, “Zn atoms in lithium niobate and mechanism of their insertion into crystals”, JETP Letters 73, 103 (2001).
    [17] Pei-Chang Tsai, Hsin-Feng Lu, Pi-Jung Chang, and Chih-Ta Chia, “OH─ Absorption of Zn-Doped LiNbO3 Single Crystals after Proton Exchange”, Jpn. J. Appl. Phys. 46, 7159 (2007).
    [18] B. Ravel and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT”, J. Synchrotron Rad. 12, 537 (2005).
    [19] M. Newville, “IFEFFIT: interactive XAFS analysis and FEFF fitting”,
    J.Synchrotron Rad. 8, 322 (2001).
    [20] E. A. Stern and S. M. Heald, “Principles and Applications of EXAFS Handbook of Synchrotron Radiation”, North-Holland, pp. 995-1014, (1983).
    [21] D. C. Koningsberger and R. Prins, “D. C. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES”, John Wiley & Sons, 1988.
    [22] Chih-Ta Chia, Chia-Chi Lee, and Pi-Jung Chang, “Substitution mechanism of ZnO-doped lithium niobate crystal determined by powder x-ray diffraction and coercive field”, Appl. Phys. Lett. 86, 182901 (2005).

    References of Chap. 6:
    [1] K. N. Kudin and G. E. Scuseria, “Range definitions for Gaussian-type charge distributions in fast multipole methods”, J. Chem. Phys. 111, 2351 (1999).
    [2] K. N. Kudin, G. E. Scuseria, and E. Cancès, “A black-box self-consistent field convergence algorithm: One step closer”, J. Chem. Phys. 116, 8255 (2002).
    [3] J. Harris, “Simplified method for calculating the energy of weakly interacting fragments”, Phys. Rev. B. 31, 1770 (1985).
    [4] B. I. Dunlap, “Fitting the Coulomb potential variationally in X molecular calculations”, J. Chem. Phys. 78, 3140 (1983).
    [5] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev. 136, B864 (1964).
    [6] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. 140, A1133 (1965).
    [7] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy”, Phys. Rev. B 45, 13244 (1992).
    [8] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B 46, 6671 (1992).
    [9] C. Sosa and C. Lee, “Density functional description of transition structures using nonlocal corrections, Silylene insertion reactions into the hydrogen molecule”, J. Chem. Phys. 98, 8004 (1993).
    [10] J. Andzelm and E. Wimmer, “Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies”, J. Chem. Phys. 96, 1280 (1992).
    [11] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B 37, 785 (1988).
    [12] B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr”, Chem. Phys. Lett. 157, 200 (1989).
    [13] P. C. Hariharan and J. A. Pople, “The influence of polarization functions on molecular orbital hydrogenation energies”, Theo. Chim. Acta 28, 213 (1973).
    [14] J. P. Blaudeau, M. P. McGrath, L. A. Curtiss, and L. Radom, “Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca”, J. Chem. Phys. 107, 5016 (1997).
    [15] R. C. B. Jr and L. A. Curtiss, “Compact contracted basis sets for third-row atoms: Ga-Kr”, J. Comp. Chem. 11, 1206 (1990).
    [16] V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, “6-31G* basis set for atoms K through Zn”, J. Chem. Phys. 109, 1223 (1998).
    [17] M. P. McGrath and L. Radom, “Extension of Gaussian-1 (G1) theory to bromine-containing molecules”, J. Chem. Phys. 94, 511 (1991).
    [18] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations, Potentials for the transition metal atoms Sc to Hg”, J. Chem. Phys. 82, 270 (1985).
    [19] W. R. Wadt and P. J. Hay, “Ab initio effective core potentials for molecular calculations, Potentials for main group elements Na to Bi”, J. Chem. Phys. 82, 284 (1985).
    [20] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular
    calculations. Potentials for K to Au including the outermost core orbitals”, J. Chem. Phys. 82, 299 (1985).

    下載圖示
    QR CODE