簡易檢索 / 詳目顯示

研究生: 吳世郁
Shih-Yu Wu
論文名稱: 斑馬魚端腦在空間記憶上所扮演的角色
To elucidate the possible role of telencephalon on the formation of spatial memory in zebrafish
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 69
中文關鍵詞: 情境線索長期記憶長期增益端腦旁側腦區N-甲基-D-天冬胺酸端腦中側腦區顳葉中側短期記憶
英文關鍵詞: CPP,conditioned place preference, LTM,long-term memory, LTP,long-term potentiation, LP,telencephalic lateral pallia, NMDA,N-methyl-D-aspartate, MP,telencephalic medial pallia, MTL,medial temporal lobe, STM,short-term memory
論文種類: 學術論文
相關次數: 點閱:193下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壹、中文摘要
    記憶會以多元方式於大腦神經細胞中形成及儲存,並可因應需求而重新喚回及表現已儲存之記憶。海馬迴為哺乳類與大部分陸地脊椎動物腦內,與空間記憶有關之重要腦區。實驗證實硬骨魚的端腦同源於哺乳類的海馬迴,負責空間相關之學習與記憶等認知功能。
    本研究採用改良型之斑馬魚T字形迷宮,合併學習前或學習後之端腦破壞處理,以探討斑馬魚之端腦與空間記憶之關聯,及其在記憶習得(acquisition)、保存(retention)與提取(retrieval)過程中的重要性。實驗結果顯示, 1.雙側端腦破壞不會影響斑馬魚的自發性探索行為,卻會明顯干擾空間記憶的習得、保存與表現。2.學習前的雙側端腦破壞,會同時影響長期記憶,及短期記憶的獲取與表現。3.學習後的雙側端腦破壞,會破壞先前已建立之空間記憶,顯示不論是長期或短期的空間記憶形成,皆需要端腦腦區(telencephalon)的參與。4. 此外,學習後的左側端腦破壞,使斑馬魚無法正常表現先前已建立之空間記憶。5.學習前右側端腦破壞,使斑馬魚出現空間記憶學習障礙。這些結果顯示,左、右端腦半球在空間記憶形成過程中,具有功能上的不對稱性。使左、右端腦分別在空間的學習與記憶上,具有不同程度的優勢性。
    綜合以上各點,本研究證實端腦在斑馬魚空間學習與記憶上扮演重要的角色,且參與層面廣涵空間記憶的習得、保存、提取與表現。此外,初步證實斑馬魚端腦左、右側可能與哺乳類相似具有空間定位優勢性。此結果不但可作為與其他物種在神經生理學上及演化的比較,且有助斑馬魚模式於神經科學研究應用之推廣。

    貳、英文摘要Abstract
    Memory which stores and deals with all requirements of existence is formed in various ways in the nerve cells of the brain. Hippocampus is critical for the formation of spatial memory in mammals and land vertebrates. The telencephalon in teleost fish is homologous to the hippocampus of mammalian, which is specifically involved in spatial learning and memory.
    The present study was aimed to study possible role of telencephalon on the spatial learning and memory in zebrafish. Which include the importance of telencephalon on the acquisition, retention, and retrieval of spatial memories. To achieve this goal, we used modified T-maze paradigm combined with specific lesion of telencephalon before and after spatial learning. Results showed: 1. Either global or unilateral lesion of the telencephalon has no impacts for locomotor activity but deficit the acquisition, retention and retrieval of spatial memory. 2. Lesion of the telencephalon impairs not only the long-term but also the short-term memory. 3. Functional asymmetric of telencephalon on spatial learning has been found in zebrafish. 4. Right side telencephalon is dominant for the spatial learning and memory. According to our results, we concluded that telencephalon plays a vital role of spatial learning and memory in zebrafish on the acquisition, retention, and retrieval of spatial memory. The telencephalon of zebrafish has cerebral lateralization which is similar to mammals. The results gathering from this study can be applied to the comparative neurophysiological studies between different species. But also extend the usage of zebrafish model on neuroscience research.

    壹、中文摘要 0 貳、英文摘要ABSTRACT 3 參、緒論 5 一、研究背景(STUDY BACKGROUND) 5 A.學習與記憶(LEARNING AND MEMORY) 5 B.空間記憶(SPATIAL MEMORY) 9 C.硬骨魚的學習與記憶(LEARNING AND MEMORY IN TELEOST FISH) 12 D.斑馬魚(ZEBRAFISH) 15 二、研究目的(STUDY PURPOSES) 19 肆、研究材料與方法 19 A.實驗動物(ANIMALS) 20 B.行為試驗儀器(APPARATUS) 20 C.空間訓練程序(BEHAVIOR PROCEDURE) 21 D.端腦手術(SURGERY) 24 E.腦部組織破壞程度檢定(REPRESENTATION OF BRAIN) 25 F.統計方法(STATISTICS)。 25 伍、實驗結果 26 陸、實驗討論(DISCUSSION) 42 柒、參考文獻(REFERENCES) 49 捌、附圖/表(FIGURES & TABLES) 55

    柒、參考文獻(References)
    Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhauser, B., Strahle, U., Gotz, M., & Bally-Cuif, L. (2006). Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol, 295, 278-293.
    Alberini, C.M., Milekic, M.H., & Tronel, S. (2006). Mechanisms of memory stabilization and de-stabilization. Cell Mol Life Sci, 63, 999-1008.
    Alves, C., Chichery, R., Boal, J.G., & Dickel, L. (2007). Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn, 10, 29-36.
    Andrade, C., Alwarshetty, M., Sudha, S., & Suresh Chandra, J. (2001). Effect of innate direction bias on T-maze learning in rats: implications for research. J Neurosci Methods, 110, 31-35.
    Andrew, R.J., Tommasi, L., & Ford, N. (2000). Motor control by vision and the evolution of cerebral lateralization. Brain Lang, 73, 220-235.
    Bingman, V.P., Ioale, P., Casini, G., & Bagnoli, P. (1990). The avian hippocampus: evidence for a role in the development of the homing pigeon navigational map. Behav Neurosci, 104, 906-911.
    Bingman, V.P., Rithers, L.V., Strasser, R., Galiardo, A. (1998). The Neuroethology of avian navigation. In R.P. Bala, Pepperberg, I.M., Kamil, A.C. (Ed.), animal cognition in nature (pp. 201-206). New York: Academic Press.
    Broglio, C., Gomez, A., Duran, E., Ocana, F.M., Jimenez-Moya, F., Rodriguez, F., & Salas, C. (2005). Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull, 66, 277-281.
    Cantalupo, C., Bisazza, A., & Vallortigara, G. (1995). Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia, 33, 1637-1646.
    Cerda, J., Conrad, M., Markl, J., Brand, M., & Herrmann, H. (1998). Zebrafish vimentin: molecular characterization, assembly properties and developmental expression. Eur J Cell Biol, 77, 175-187.
    Clayton, N.S., & Krebs, J.R. (1994). Memory for spatial and object-specific cues in food-storing and non-storing birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 174, 371-379.
    Colwill, R.M., Raymond, M.P., Ferreira, L., & Escudero, H. (2005). Visual discrimination learning in zebrafish (Danio rerio). Behav Processes, 70, 19-31.
    Corkin, S. (2002). What's new with the amnesic patient H.M.? Nat Rev Neurosci, 3, 153-160.
    Darland, T., & Dowling, J.E. (2001). Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A, 98, 11691-11696.
    Denenberg, V.H. (1984). Effect of right hemisphere lesion in rats. In A. Ardila, Ostrosky-Solis, F. (Ed.), The right hemisphere: Neurology and Neuropsychology. New York: Gordon and Breach.
    Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23, 209-226.
    Franz, M.O., & Mallot, H.A. (2000). Biomimetic robot navigation. Robotics and Autonomous Systems, 30, 133-153.
    Grunwald, D.J., & Eisen, J.S. (2002). Headwaters of the zebrafish -- emergence of a new model vertebrate. Nat Rev Genet, 3, 717-724.
    Guo, S. (2004). Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav, 3, 63-74.
    Han, C.J., O'Tuathaigh, C.M., van Trigt, L., Quinn, J.J., Fanselow, M.S., Mongeau, R., Koch, C., & Anderson, D.J. (2003). Trace but not delay fear conditioning requires attention and the anterior cingulate cortex. Proc Natl Acad Sci U S A, 100, 13087-13092.
    Hartley, T., Maguire, E.A., Spiers, H.J., & Burgess, N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877-888.
    Jarrard, L.E. (1993). On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol, 60, 9-26.
    Jarrard, L.E. (1995). What does the hippocampus really do? Behav Brain Res, 71, 1-10.
    Levin, E.D., Limpuangthip, J., Rachakonda, T., & Peterson, M. (2006). Timing of nicotine effects on learning in zebrafish. Psychopharmacology (Berl), 184, 547-552.
    Lopez, J.C., Broglio, C., Rodriguez, F., Thinus-Blanc, C., & Salas, C. (2000). Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish. Behav Brain Res, 109, 91-98.
    Lopez, J.C., Broglio, C., Rodríguez, F., Thinus-Blanc, C., Salas, C. (1999). Multiple spatial learning strategies in goldfish (Carassius auratus). Anim Cogn, 2, 109-120.
    Malkova, L., & Mishkin, M. (2003). One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci, 23, 1956-1965.
    Miklosi, A., & Andrew, R.J. (1999). Right eye use associated with decision to bite in zebrafish. Behav Brain Res, 105, 199-205.
    Morris, R.G. (1989). Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci, 9, 3040-3057.
    Nam, R.-H., Kim, W., & Lee, C.-J. (2007). NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neuroscience Letters, 370, 248-251.
    Nieuwenhuys, R. (1963). The Comparative Anatomy of the Actinopterygian Forebrain. J Hirnforsch, 13, 171-192.
    Ninkovic, J., & Bally-Cuif, L. (2006). The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 39, 262-274.
    Ninkovic, J., Folchert, A., Makhankov, Y.V., Neuhauss, S.C., Sillaber, I., Straehle, U., & Bally-Cuif, L. (2006). Genetic identification of AChE as a positive modulator of addiction to the psychostimulant D-amphetamine in zebrafish. J Neurobiol, 66, 463-475.
    Northcutt, R.G. (1981). Evolution of the telencephalon in nonmammals. Annu Rev Neurosci, 4, 301-350.
    O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381, 425-428.
    O'Keefe, J., & Conway, D.H. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res, 31, 573-590.
    O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 34, 171-175.
    O'keefe, J., Nadel, L. (1978). The hippocampus as a cognitive map: Oxford University Press.
    Phillips, R.G., & LeDoux, J.E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci, 106, 274-285.
    Portavella, M., Torres, B., & Salas, C. (2004). Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci, 24, 2335-2342.
    Portavella, M., Torres, B., Salas, C., & Papini, M.R. (2004). Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett, 362, 75-78.
    Portavella, M., & Vargas, J.P. (2005). Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci, 21, 2800-2806.
    Portavella, M., Vargas, J.P., Torres, B., & Salas, C. (2002). The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull, 57, 397-399.
    Raboyeau, G., De Boissezon, X., Marie, N., Balduyck, S., Puel, M., Bezy, C., Demonet, J.F., & Cardebat, D. (2008). Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology, 70, 290-298.
    Rawlins, J.N., Lyford, G.L., Seferiades, A., Deacon, R.M., & Cassaday, H.J. (1993). Critical determinants of nonspatial working memory deficits in rats with conventional lesions of the hippocampus or fornix. Behav Neurosci, 107, 420-433.
    Richard, F., Thompson, Jeansok, J.K. (1996). Memory systems in the brain and localization of a memory. Proc Natl Acad Sci U S A, 93, 13438-13444.
    Richardson, J.T. (1996). Memory impairment in multiple sclerosis: reports of patients and relatives. Br J Clin Psychol, 35 ( Pt 2), 205-219.
    Rodriguez, F., Duran, E., Gomez, A., Ocana, F.M., Alvarez, E., Jimenez-Moya, F., Broglio, C., & Salas, C. (2005). Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull, 66, 365-370.
    Rodriguez, F., Lopez, J.C., Vargas, J.P., Gomez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci, 22, 2894-2903.
    Saint-Amant, L., & Drapeau, P. (2001). Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron, 31, 1035-1046.
    Saito, K., & Watanabe, S. (2004). Spatial learning deficits after the development of dorsomedial telencephalon lesions in goldfish. Neuroreport, 15, 2695-2699.
    Saito, K., & Watanabe, S. (2006). Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav Brain Res, 172, 187-194.
    Salas, C., Broglio, C., Duran, E., Gomez, A., Ocana, F.M., Jimenez-Moya, F., & Rodriguez, F. (2006). Neuropsychology of learning and memory in teleost fish. Zebrafish, 3, 157-171.
    Salas, C., Broglio, C., & Rodriguez, F. (2003). Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity. Brain Behav Evol, 62, 72-82.
    Salas, C., Rodriguez, F., Vargas, J.P., Duran, E., & Torres, B. (1996). Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci, 110, 965-980.
    Sanchez Riolobos, A. (1986). Differential effect of chemical lesion and electrocoagulation of the central amygdaloid nucleus on active avoidance responses. Physiol Behav, 36, 441-444.
    Sherry, D., & Duff, S. (1996). Behavioural and neural bases of orientation in food-storing birds. J Exp Biol, 199, 165-172.
    Sovrano, V.A., Bisazza, A., & Vallortigara, G. (2007). How fish do geometry in large and in small spaces. Anim Cogn, 10, 47-54.
    Squire, L.R. (1987). Memory and brain. New York: Oxford University Press.
    Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99, 195-231.
    Squire, L.R., & Knowlton, B.J. (1995). Learning about categories in the absence of memory. Proc Natl Acad Sci U S A, 92, 12470-12474.
    Squire, L.R., & Zola, S.M. (1996). Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A, 93, 13515-13522.
    Swain, H.A., Sigstad, C., & Scalzo, F.M. (2004). Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol, 26, 725-729.
    Tolman, E.C. (1932). Purposive behavior in animals and men. New York: Century.
    Tully, T., Bourtchouladze, R., Scott, R., & Tallman, J. (2003). Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov, 2, 267-277.
    Vallortigara, G., Rogers, L.J., Bisazza, A., Lippolis, G., & Robins, A. (1998). Complementary right and left hemifield use for predatory and agonistic behaviour in toads. Neuroreport, 9, 3341-3344.
    Vargas, J.P., Bingman, V.P., Portavella, M., & Lopez, J.C. (2006). Telencephalon and geometric space in goldfish. Eur J Neurosci, 24, 2870-2878.
    Vargas, J.P., Rodr inverted question markiguez, F., JC, L.i.q.m., Arias, J.L., & Salas, C. (2000). Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res, 865, 77-84.
    Westerfield, M. (1995). The Zebrafish BooK: A Guide for Laboratory Use of the Zebrafish (Brachydanio Rerio). University of Oregon Press.
    Williams, F.E., White, D., & Messer, W.S. (2002). A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes, 58, 125-132.
    Xu, X., Scott-Scheiern, T., Kempker, L., & Simons, K. (2007). Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem, 87, 72-77.
    Yang, S., Kim, W., Choi, B.H., Koh, H.Y., Lee, C.J. (2003). Alcohol impairs learning of T-maze task but not active avoidance task in zebrasih. Korean J Biol sci, 7, 303-307.
    Yu, L., Tucci, V., Kishi, S., & Zhdanova, I.V. (2006). Cognitive aging in zebrafish. PLoS ONE, 1, e14.

    QR CODE