研究生: |
Shivaji V. More |
---|---|
論文名稱: |
APPROACHES TOWARDS THE SYNTHESIS OF BIOLOGICALLY ACTIVE N-HETEROCYCLES AND SYNTHESIS OF ANTICANCER AGENTS |
指導教授: |
姚清發
Yao, Ching-Fa |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 416 |
英文關鍵詞: | BIOLOGICALLY ACTIVE, ANTICANCER AGENTS |
論文種類: | 學術論文 |
相關次數: | 點閱:139 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ABSTRACT
APPROACHES TOWARDS THE SYNTHESIS OF BIOLOGICALLY ACTIVE N-HETEROCYCLES AND SYNTHESIS OF ANTICANCER AGENTS
Knowledge of heterocyclic chemistry is useful in biosynthesis and in drug metabolism as well. Nucleic acids are important in biological processes of heredity and evolution. There are a large number of synthetic heterocyclic compounds with other important applications and many are valuable intermediates in synthesis. Heterocyclic compounds hold a special place among pharmaceutically important natural and synthetic materials. The remarkable ability of heterocyclic nuclei to serve both as biomimetics and active pharmacophores has largely contributed to their unique value as traditional key elements of numerous drugs.
The title of the thesis clearly indicates the objective that is to interface synthetic organic chemistry for the development of new methodologies and synthesize of anti-cancer agents. The thesis is divided into three chapters. The first chapter is divided into three sections, section I and II deals with the synthesis of quinoxaline using different Lewis acids such as molecular iodine and CAN under mild conditions. The section III deals with the synthesis of quinoxaline using Ionic Liquid as a green promoter and solvent. Second chapter is divided in to two sections, section I describe the synthesis of tetrahydroquinoline and section II which deals with the synthesis of benzodiazepines using TMSCl as a catalyst. Chapter third describes the synthesis of new anti-cancer agents.
Chapter 1: Synthesis of Quinoxalines
Among the various classes of nitrogen containing heterocyclic compounds, Quinoxalines are of interest because of the occurrence of their saturated and partially saturated derivatives in biologically active compounds and natural products.
Section I: Synthesis of quinoxalines using molecular iodine as catalyst
Compounds containing the quinoxaline ring system have been shown to possess anticancer, antituberculosis, antimicrobial, anti-HIV, antiprotozoal, antimalarial, anti-inflammatory, anticonvulsant and so many other activities. This section deals with the synthesis of quinoxaline using molecular iodine as a catalyst.
Section II: Synthesis of quinoxalines using CAN as catalyst in tap water
Green chemistry is the universally accepted term to describe the movement towards more environmentally acceptable chemical processes and products. Green chemistry can be achieved by applying environmentally friendly technologies. Hundreds of tons of hazardous waste are released to the air, water, and land by industry every hour of every day. So needs to develop new ecofriendly methodologies for the synthesis of important organic compounds. This section deals with the synthesis of quinoxaline using CAN as a catalyst in tap water.
Section III: Synthesis of quinoxalines using Ionic Liquid
The past few years has witnessed the evolution of a new era in chemical research by the
entry of ionic liquids as potential ‘Green Designer Solvents’ as novel replacements for volatile organic compounds traditionally used as industrial solvents. Ionic liquids are systems consist of salts that are liquid at ambient conditions. This section describes the use of Ionic Liquid as a green promoter for the synthesis of Quinoxaline.
Chapter 2: Synthesis of Tetrahydroquinolines and 1, 5-Benzodiazepines
Section I: Synthesis of tetrahydroquinolines using TMSCl as catalyst
Tetrahydroquinoline is an essential structural unit in many important natural products (alkaloids) such as veprisine, flindersine, oricine, simulenoline, huajiaosimuline, zanthodioline, teclealbine and flindersiamine and exhibits interesting biological activities in various field, such as psychotropic, antiallergenic, anti-inflammatory, antipyretic, analgesic, antiplatelet and estrogenic activity. This section deals with the synthesis of tetrahydroquinolines using TMSCl as a catalyst at room temperature.
Section II: Synthesis of 1,5-benzodiazepines
The benzodiazepine nucleus is a well-studied traditional pharmacophoric scaffold that has emerged as a core structural unit of various sedative hypnotic, muscle relaxant, anxiolytic, antistaminic, and anticonvulsant agents. Although the first benzodiazepine was introduced as a drug nearly 35 years ago the research in this area is still very active and is directed towards the synthesis of compounds with enhanced pharmacological activity. This section describes a TMSCl promoted simple and effective method for the synthesis of several 1,5-benzodiazepines at ambient temperature.
Chapter 3: Synthesis of Furazan-3, 4-diamide derivatives
More than century before furazan and its derivatives were synthesized. Their importance has much attracted due to their biological properties. Compounds with furazan ring system have many pharmacological properties. 3,4-Diphenylfuraoxan and other furaoxan derivatives have ability to release NO and act as a nonsteroidal anti- inflammatory drugs which are widely used to treat the effect of inflammation through inhibition of cyclooxygenase enzymes ( COX ). NO releasing moieties also display reversible histamine H3-antagonistic activity. This Section deals with the synthesis of some new furazanamide derivatives as an anticancer agent.
1. Sato, N. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. V. F., Eds.; Pergamon Press: London, 1996; Vol. 6, pp 233–278, Chapter 3, and references cited therein.
2. (a) Gao, H. L.; Yamasaki, E. F.; Chan, K. K.; Shen, L. L.; Snapka, R. M. Mol. Pharmacol. 2003, 63, 1382; (b) Carta, A.; Loriga, M.; Paglietti, G.; Mattana, A.; Fiori, P. L.; Mollicotti, P.; Sechi, L.; Zanetti, S. Eur. J. Med. Chem. 2004, 39, 195; (c) Carta, A.; Loriga, M.; Zanetti, S.; Sechi, L. A. Il Farmaco 2003, 58, 1251; (d) Balzarini, J.; Pelemans, H.; Riess, G.; Roesner, M.; Winkler, I.; De Clercq, E.; Kleim, J. P. Biochem. Pharmacol. 1998, 55, 617; (e) Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P. M.; Franck, X.; Hocquemiller, R.; Figade`re, B. Bioorg. Med. Chem. Lett. 2006, 16, 815; (f) Zarranz, B.; Jaso, A.; Aldana, I.; Monge, A.; Maurel, S.; Deharo, E.; Jullian, V.; Sauvain, M. Arzneim.-Forsch. 2005, 55, 754; (g) Ismail, M. M. F.; Ammar, Y. A.; Ibrahim, M. K.; El-Zahaby, H. S.; Mahmoud, S. S. Arzneim.-Forsch. 2005, 55, 738; (h) Ferreri, G.; Chimirri, A.; Russo, E.; Gitto, R.; Gareri, P.; De Sarro, A.; De Sarro, G. Pharmacol. Biochem. Behav. 2004, 77, 85.
3. Kim, J. H.; Kim, J. H.; Lee, G. E.; Kim, S. W.; Chung, I.K. Biochem. J. 2003, 373, 523.
4. Myers, M. R.; He, W.; Hanney, B.; Setzer, N.; Maguire, M. P.; Zulli, A.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Spada, A. P. Bioorg. Med. Chem. Lett. 2003,
13, 3091.
5. a)Guo, H. X.; Wang, F.; Yu, K. Q.; Chen, Y.; Bai, D. L.; Chen, K. X.; Shen, X.; Jiang, H. L. Acta Pharmacol. Sin. 2005, 26, 1201; b) Li, J.; Chen, J.; Zhang, L.; Wang, F.; Gui, C.; Zhang, L.; Qin, Y.; Xu, Q.; Liu, H.; Nan, F.; Shen, J.; Bai, D.; Chen, K.; Shen, X.; Jiang, H. Bioorg. Med. Chem. 2006, 14, 5527.
6. Kim, K. S.; Qian, L.; Dickinson, K. E. J.; Delaney, C. L.; Bird, J. E.; Waldron, T. L.; Moreland, S. Bioorg. Med. Chem. Lett. 1993, 3, 2667.
7. Novellino, E.; Cosimelli, B.; Ehlardo, M.; Greco, G.; Iadanza, M.; Lavecchia, A.; Rimoli, M. G.; Sala, A.; Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Taliani, S.;
La Motta, C.; Klotz, K. N.; Tuscano, D.; Trincavelli, M. L.; Martini, C. J. Med. Chem. 2005, 48, 8253.
8. Kim, K. S.; Qian, L. G.; Bird, J. E.; Dickinson, K. E. J.; Moreland, S.; Schaeffer, T. R.; Waldron, T. L.; Delaney, C. L.; Weller, H. N.; Miller, A. V. J. Med. Chem. 1993, 36, 2335.
9. Hassan, S. Y.; Khattab, S. N.; Bekhit, A. A.; Amer, A. Bioorg. Med. Chem. Lett. 2006, 16, 1753.
10. Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuura, S.; Ishida, J.; Yamamoto, H.; Hattori, K.; Matsuoka, N.; Mutoh, S. J. Pharmacol. Sci. 2006, 100, 195p.
11. Kong, L. L.; Yu, L. C. Neurosci. Lett. 2006, 402, 180.
12. Baudy, R. B.; Greenblatt, L. P.; Jirkovsky, I. L.; Conklin, M.; Russo, R. J.; Bramlett, D. R.; Emrey, T. A.; Simmonds, J. T.; Kowal, D. M.; Stein, R. P.; Tasses, R. P. J. Med. Chem. 1993, 36, 331.
13. Toshima, K.; Kimura, T.; Takano, R.; Ozawa, T.; Ariga, A.; Shima, Y.; Umezawa, K.; Matsumura, S. Tetrahedron 2003, 59, 7057.
14. (a) Barnett, S. F.; Bilodeau, M. T.; Lindsley, C. W. Curr. Top. Med. Chem. 2005, 5, 109; (b) Bilodeau, T. M.; Duggan, M. E.; Hartnett, J. C.; Lindsley, C. W.; Manley, P. J.; Wu, Z.; Zhao, Z. WO 2003086394; (c) Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E. Bioorg. Med. Chem. Lett. 2005, 15, 761.
15. Moorthy, S. S. P.; Elena, D.; John, D.; Richard, M. F.; John, H.; Xinshan, K.; Dan, L.; Michael, M.; Glenn, N.; Richard, M. S.; Wolfgang, W.; Shiyin, Y.; Hong, Z. J. Med. Chem. 2007, 50, 4279.
16. Zhang, L.; Qiu, B.; Xiong, B.; Li, X.; Li, J.; Wang, X.; Li, J.; Shen, J. Bioorg. Med. Chem. Lett. 2007, 17, 2118.
17. (a) Dell A.; William, D.H.; Morris, H.R.; Smith, G.A.; Feeney, J.; Roberts, G.C.K. J. Am. Chem. Soc. 1975, 97, 2497; (b) Bailly, C., Echepare, S.; Gago, F.; Waring, M. Anti-Cancer Drug Des. 1999, 15, 291; (c) Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270.
18. Brock, E. D.; Lewis, D. M.; Yousaf, T. I.; Harpe, R H. H. (The Procter and Gamble Company, USA) WO 9951688, 1999.
19. Justin Thomas, K. R.; Marappan, V.; Jiann, T. L.; Chang-Hao, C.; Yu-ai, T. Chem. Mater. 2005, 17, 1860.
20. (a) Dailey S.; Feast, J. W.; Peace, R. J.; Saga, R. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238, (b) O`Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881.
21. Jonathan, L. S.; Hiromitsu, M.; Toshihisa, M.; Vincent, M. L.; Hiroyuki, F. Chem. Comm., 2002, 862.
22. (a) Jonathan, L. S.; Hiromitsu, M.; Toshihisa, M.; Vincent, M. L.; Hiroyuki, F. J. Am. Chem. Soc. 2002, 124, 13474; (b) Peter, P. C.; Gang, Z.; Grace, A. M.; Carlos, H.; Linda, M. G. T. Org. Lett. 2004, 6, 333.
23. Sascha, O.; Rudiger, F. Synlett 2004, 9, 1509.
24. (a) Kazunobu, R. T.; Tomohiro, O.; Shuichi, M. Chem.Comm. 2002, 212; (b) Louis, S.; Marc, M. G.; Jory, J. W.; Joseph, P. B. J. Org. Chem. 2003, 68, 4179.
25. Korner Ber. 1884, 17, 573.
26. Hinsberg Ber. 1884, 17, 318.
27. George, Y. S.; Subhi, A.-A. J. Chem. Engin. Data 1973, 18(1), 102.
28. Shinzo, K.; Yoko, T.; Shiroshi, S. Synthesis 1978, 372.
29. Jose, B.; Fernando, A.; Ramon, L.; Maria-paz, C. Synthesis 1985, 313.
30. Christopher, B. B.; Bruno, A.; Andrew, C. T.; Cristina, r.; Jonathan, L. S. J. Am. Chem. Soc. 1999, 121, 10438.
31. Daniel, J. K.; David, A. M.; Frank, W. H. Macromolecules 2001, 34, 2427.
32. Sylvain, A.; Elisabet, D. Tetrahedron Lett. 2002, 43, 3971.
33. Zhijian Z.; David, D.W.; Scoot, E. W.; William, H. L.; Craig, W. L. Tetrahedron Lett. 2004, 45, 4873.
34. So, Y. K.; Kang, H. P.; Young, K. C. Chem.Comm. 2005, 1321.
35. Chan, S. C.; Sung, G. O. Tetrahedron Lett. 2006, 47, 5633.
36. (a) VOGEL’s Textbook of Practical Organic Chemistry, Fifth Edition pp 1190; (b) Brown, D. J. Quinoxalines: supplements II. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Wipf, P., Eds.; john Wiley and Sons: New Jersey 2004. and references cited here.
37. (a) Kim, K. M.; Ryu, E. K. Tetrahedron Lett. 1996, 37, 1441; (b) Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. J. Org. Chem. 2001, 66, 7527; (c) Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Tetrahedron Lett. 2002, 43, 3653; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2002, 43, 9703; (e) Bandgar, B. P.; Shaikh, K. A. Tetrahedron Lett. 2003, 44, 1959. (f) Das, B.; Banerjee, J.; Ramu, R.; Pal, R.; Ravindranath, N.; Ramesh, C. Tetrahedron Lett. 2003, 44, 5465; (g) Sun, J.; Dong, Y; Wang, X.; Wang, S.; Hu, Y. J. Org. Chem. 2004, 69, 8932; (h) Ke, B.; Qin, Y.; He, Q.; Huang, Z.; Wang, F. Tetrahedron Lett. 2005, 46, 1751.
38. Bhosale, R. S.; Bhosale, S. V.; Bhosale, S. V.; Wang, T.; Zubaidha, P. K. Tetrahedron Lett. 2004, 45, 9111.