簡易檢索 / 詳目顯示

研究生: 陳華玟
Hua-Wen Chen
論文名稱: 彰化平原區晚第四紀沉積物高解析度層序地層學研究
High-resolution Sequence Stratigraphic Analysis of Late Quaternary Deposits of the Changhua Coastal Plain in the Frontal Arc-Continent Collision Belt of Central Taiwan
指導教授: 李通藝
Lee, Tung-Yi
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 131
中文關鍵詞: 彰化平原晚第四紀沉積環境層序地層海水面變化構造活動
英文關鍵詞: Changhua Coastal Plain, Late Quaternary, sedimentary environments, sequence stratigraphy, sea-level change, tectonic
論文種類: 學術論文
相關次數: 點閱:216下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於沉積盆地的相對海水面變化(relative sea level change)是由大地構造(tectonic),全球海水面(eustatic)變遷及沉積物供應(sediment supply) 等的交互作用所產生。而沉積的地層紀錄則可反應此一相對海水面變化的結果。因彰化平原及八卦台地位處褶皺逆衝斷層帶最前緣,為一構造活動活躍的區域,若以一系列依序向西遷移的逆衝斷層而言,彰化斷層應為中臺灣最年輕的逆衝斷層,且彰化平原又緊鄰臺灣海峽,實為研究大地構造及全球海水面變遷對沉積盆地相對海水面變化影響的最佳區域。故本研究主要目的為藉由彰化平原地區晚第四紀鑽井岩心紀錄的研究,來了解全球海水面變遷及構造活動對本區作用影響的相對重要性,並重建本區的沉積演變史。
    本研究主要利用中央地質調查所地下水觀測網及區域地質調查於彰化平原地區鑽探的30口岩心(多數岩心深度約200公尺)進行研究,研究結果可辨識出25種岩相,由相岩相組合可區分出九種主要沉積環境。包括遠濱過渡帶屬於大陸棚(shelf)沉積體系,濱面、河口灣、潟湖、潮道、潮坪屬於邊緣海(marginal marine)沉積體系,河流相(包括河道及泛濫平原)及沖積扇則併屬於陸地(terrestrial)沉積體系。
    研究結果顯示,井深200公尺左右之岩心依層序地層分析可定出三個層序界限(SB),由上而下分別為SB1, SB2及SB3,即可分出層序1(SQ1)、2 (SQ2)及3 (SQ3)三個層序,反應了三次主要的相對海水面上升、下降的循環。根據碳十四定年資料指示SQ1之沉積年代在海側約為16 ka至現代,陸側約10 ka至現代,SQ2約為20至40 ka之間。兩層序之界限為不整合面,時間間隔約4 ka至10 ka。
    本區自晚更新世至全新世(40-0 ka)的沉積演化史可綜述如下:4萬年前,彰化平原全區為陸相沉積物所覆蓋,之後可能由於彰化斷層不同區段活動性的差異造成盆地在花壇以北較以南為高的形態。在此時期,平原中部的海側有一下切谷地(incised valley)的生成。40 ka以後,相對海水面上升,下切谷地有河口沉積物的充填,南端海側為遠濱過渡帶環境,其它海側則為邊緣海環境。之後相對海水面持續上升,約至35 ka左右河口灣填滿,濱面砂及大陸棚沉積物覆於其上並向陸側退積(retrogradation),海水面於30 ka左右達到最大海漫面(maximum flooding surface, MFS),此時期之沉積物係屬海進體系域。約30至20 ka期間,海水面持續下降,大陸棚、邊緣海及河流–沖積扇陸相沉積物向海側加積(progradation),屬高水位體系域沉積。而古濁水溪河道主要位於平原中央。大約在20 至18 ka之間為全球末次冰期的最大冰期(LGM),本區除八卦台地邊緣外並無沉積紀錄,顯示SB1的不整合面是與末次最大冰期的不整合一致,此時期有4個下切谷地生成,而在18至16 ka期間,本區仍為一侵蝕區。之後開始海進,約16至10 ka之間下切谷地為河口灣沉積物所充填,是屬於SQ1的下部海進體系域。而在約10至6 ka間持續的海進,於河口填滿後再上覆屬於上部海進體系域的大陸棚及邊緣海沉積物,並持續向陸側退積,約在7至6 ka海水位上升達到MFS。高水位體系域的沉積年代約為6 ka至現代,海退的大陸棚及邊緣海以及河相沉積體系向海側加積,但1千年以來的河相沉積物並未持續往海岸加積,而被侷限於平原中央,海側則為邊緣海沉積物的向上加積(aggradation)所填滿。且在1 千年以後,平原中央的河道沉積物轉為沖積平原沉積物,濁水溪主要河道乃向南遷移。
    在全新世時期本區為相對的構造活動較安靜期,但沉積物堆積速率則明顯的較之前快很多,顯示末次間冰期彰化平原區(除了八卦台地邊緣外)沉積體系的變化及分佈主要受控於全球海水面的變化因素。但此時期彰化平原的東南側即使於海水面達最大海漫面時期,全區幾乎覆於海水面的狀況下仍保持陸相的沉積形態,則可能是受控於該區濁水溪沉積物供應速率較快的因素。而在2萬年至4萬年 SQ2 沉積期間,沉積物的堆積空間主要由盆地的下沉所提供而非全球海水面的變動所提供,則指示在末次冰期晚期時,構造活動為影響本區沉積形態的主要控因。

    For the aim to reconstruct the depositional evolution and solve the impacts of eustacy and tectonic on relative sea-level change of the Late Quaternary foreland basin- Changhua Coastal Plain, detailed sequence stratigraphic analysis of 30 cores from the Late Quaternary deposits of the Changhua Coastal Plain that provides a 40 ka high resolution record of the depositional history of a region situated in the frontal arc-continent collision belt of Taiwan. Twenty-five lithofacies and nine facies associations are recognized in the cores. Three depositional systems are from terrestrial system (alluvial fan and fluvial) to marginal marine (estuarine, shoreface, lagoon, tidal flat, marsh) and shallow shelf (offshore-transition) systems. Sedimentology and sequence stratigraphic analysis shows that the sedimentation of study area reflects two main cycles (sequence 1 and Sequence 2) of sea-level falls and rises. Transgressive (TST) and highstand (HST) deposits can be differentiated in sequence 1 (SQ1, 0-16 ka) and sequence 2 (SQ2, 20-40 ka). Sequence boundary 1 (SB 1) is an unconformity.
    The Late Pleistocene to Holocene (0-40 ka) depositional evolution of the study area is summarized as follows. Fluvial sedimentation prevailed before 40 ka, and then a differential tectonic activity was recorded in regions north and south of the HT well with a wide and shallow incised valley formed in the middle area of Changhua Coastal Plain in this period. Since 40 ka, estuary (middle area) and shelf (southernmost area) deposits formed the lower TST during 40-35 ka. Between 35–30 ka was characterized by retrogradation of shelf and marginal marine systems (upper TST), and then sea-level reached maximum (MFS2) at about 30 ka. HST (30-20 ka) was characterized by shelf, marginal marine, and fluvial–alluvial fan progradation. HST phase was followed by non-deposition and erosion during the Last Glacial Maximum unconformity (SB1), except the western margin of Pakua tableland. Between 16 and 6 ka, the Changhua Coastal Plain experienced rising sea-level with retrogradational deposition. From 16 to 10 ka, estuarine deposits (lower TST) were deposited. From 10 to 6 ka, shelf and marginal marine (upper TST) deposited. By about 7–6 ka, sea level reached its peak (MFS1), and shelf and marginal marine sediments covered most of the study area. After 6 ka, the highstand was dominated by progradation of shelf, marginal marine and terrestrial deposits. About 1 ka, fluvial deposits were preserved in the central part of the Changhua Coastal Plain. Since then, fluvial channels shifted southward to the present-day Chuoshuei River.
    The depositional patterns of SQ1 and SQ2 in this tectonically active area reflected the complex interplay between high-frequency sea-level fluctuations, tectonics (subsidence and uplift), and autocyclic processes. The study area was relatively speaking in tectonic quiescence during Holocene but sediments accumulation rate in this period was about 3 times of before which may indicate the depositional pattern of Changhua Coastal Plain in the last interglacial was majorly controlled by eustacy, and fast sediment supply made that southeastern area only recorded the terrestrial sediments in this period. But the accommodation for the SQ2 deposits was largely created by tectonic subsidence since regional tectonism was very active during late last glacial.

    摘要 I Abstract Ш Table of contents VI List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Geological background 1 1.1.1 Tectonics 1 1.1.2 Topography 1 1.1.3 Stratigraphy 3 1.1.4 Structures 5 1.1.5 Neotectonics 5 1.2 Motivation 6 1.3 Method 7 Chapter 2 High-resolution sequence stratigraphic analysis of Late Quaternary deposits of the Changhua Coastal Plain in the frontal arc-continent collision belt of Central Taiwan 9 2.0 Abstract 9 2.1 Introduction 11 2.2 Methods 15 2.3 Facies associations and depositional environments 18 2.3.1 Estuary facies association 22 2.3.2 Offshore-transition zone facies association 25 2.3.3 Shoreface facies association 27 2.3.4. Lagoon facies association 28 2.3.5 Tidal channel facies association 30 2.3.6 Tidal flat facies association 31 2.3.7 Marsh facies association 33 2.3.8 Fluvial facies association 34 2.3.9 Alluvial fan facies association 35 2.4 Sequence stratigraphy 38 2.4.1 Variations among sequential environments, and key surfaces 38 2.4.2 Correlations 46 2.5 Paleogeographic evolution 49 2.6. Factors controlling changes in relative sea level 52 2.6.1 Eustatic factors 53 2.6.2 Tectonic factors 56 2.7 Conclusions 58 2.8 Acknowledgements 61 Chapter 3 Neotectonic vs. climatic forcing in the Late Quaternary Sedimentary Evolution of a Forland Basin (Changhua Coastal Plain, Taiwan) 62 3.0 Abstract 62 3.1 Introduction 63 3.2 Geological setting 66 3.3 Sedimentary facies 70 3.3.1 Fluvial facies 71 3.3.1.1 Channel-fill facies 72 3.3.1.2 Floodplain facies 79 3.3.2 Alluvial fan facies 79 3.3.3 Estuary facies 80 3.3.4 Lagoon facies 81 3.3.5 Tidal flat facies 83 3.3.6 Marsh facies 84 3.3.7 Shoreface facies 88 3.3.8 Offshore-transition facies 89 3.4 Stratigraphic framework 91 3.4.1 Late Pleistocene to Holocene (0-16 ka) sequence (SQ1) 91 3.4.2 Sequence boundary 1 (SB1) 94 3.4.3 Late Pleistocene (20-40 ka) sequence (SQ2) 94 3.4.4 Sequence boundary 2 (SB2) 96 3.5 Depositional evolution 97 3.5.1 Pre-40 ka 97 3.5.2 40-20 ka 98 3.5.3 16-0 ka 100 3.6 Accumulation curves and subsidence rate 102 3.6.1 Accumulation curves 102 3.6.2 Subsidence rate 106 3.7 Tectonics vs. Climate Forcing 108 3.8 Conclusions 110 3.9 Acknowledgements 112 Chapter 4 Conclusions 113 References 119 Appendix I: SCI publication 131 List of tables 1.1 The stratigraphic sequence of Pakua tableland and Changhua coastal plain 4 Table 2.1 Classification of lithofacies. Facies codes are modified from Miall (1978) and Postma (1990) 19 Table 2.2 Lithofacies associations of different depositional environments and depositional systems 21 Table 3.1 Radiocarbon dates from cores of Changhua coastal plain. Calcibrated 14C ages were calculated according to Hughen, et al. (2004) Reimer, et al. (1998), Stuvier et al. (1998) and Stuvier et al. (2005) 103 Table 3.2 Sediment accumulation rates was calculated from the HB, FY, HA, FR, ST, DF, SH, HH, ST YA, and GH wells 106 List of figures Figure 1.1 The geological map and borehole sites of study area 2 Figure 2.1 (A) Simplified regional map showing the major tectonic elements of the Taiwan region and location of the study area. (B) Major geologic elements of Taiwan. The dashed line A–B shows the location of the cross-section in C. (C) Schematic cross-section through central Taiwan showing the major tectonic elements and tectonic setting of the study area 12 Figure 2.2 Geological map of the Changhua area, showing the river system of the frontal thrust belt, Central Taiwan 14 Figure 2.3 Well log of the Tianwei borehole showing the main sedimentary facies, and gamma ray and resistivity log data 16 Figure 2.4 Well log of the Lushang borehole showing the main sedimentary facies, and the abundance of foraminifera and planktonic foraminifera 17 Figure 2.5 Mud, sand and mud interbeded, sand and gravel lithofacies types 24 Figure 2.6 Stratigraphic cross section (N-S direction) of the Changhua Coastal Plain, showing sedimentary facies distribution 25 Figure 2.7 Stratigraphic cross section (W-E direction) of the Changhua Coastal Plain, showing sedimentary facies distribution (see Fig. 2.2 for location of boreholes) 29 Figure 2.8 Sequence stratigraphy and architecture of Late Quaternary deposits in the Hanbau–Huatan cross-section (see Fig. 2.2 for location) 37 Figure 2.9 Sequence stratigraphy and architecture of Late Quaternary deposits in the Lushang–Shetou cross-section (see Fig. 2.2 for location) 40 Figure 2.10 Sequence stratigraphy and architecture of Late Quaternary deposits in the Houan–Ershuei cross-section (see Fig. 2.2 for location) 43 Figure 2.11 Sequence stratigraphy and architecture of Late Quaternary deposits in the Shianshi–Houan cross- section (see Fig. 2.2 for location) 44 Figure 2.12 Sequence stratigraphy and architecture of Late Quaternary deposits in the Shendung–Siluo cross-section (see Fig. 2.2 for location) 45 Figure 2.13 Paleogeographic evolution of the last interglacial sequence (SQ1) from 16 to 1 ka 51 Figure 2.14 Comparison of (A) the Pacific deep-sea core V19- 30d18Ob relative to the modern value (3.45 0/00;Waelbroeck et al., 2002) with the relative sea-level curve in thewestern area (B), central area (C), and eastern area (western margin of the Pakua Tableland)(D) of the Changhua Coastal Plain since 25 ka 54 Figure 2.15 Fence diagram showing Late Quaternary depositional system architecture in the subsurface of the Changhua Coastal Plain 57 Figure 3.1 Geodynamical setting of the Taiwan shows the convergence of the Eurasian plate and Philippine Sea plate. The Peigan High is depicted in the West Taiwan Basin 67 Figure 3.2 Geological map of the Changhua area, showing the river system of the frontal thrust belt, Central Taiwan 68 Figure 3.3 Stratigraphic correlarion of sedimentary colums and architecture interpretation of Late Quaternary deposits in the SS-CH1cross-section 75 Figure 3.4 Stratigraphic correlarion of sedimentary colums and architecture interpretation of Late Quaternary deposits in the HB–HT cross-section 76 Figure 3.5 Stratigraphic correlarion of sedimentary colums and architecture interpretation of Late Quaternary deposits in the LS-ST cross-section 77 Figure 3.6 Stratigraphic correlarion of sedimentary colums and architecture interpretation of Late Quaternary deposits in the HA-ES cross-section 78 Figure 3.7 Stratigraphic correlarion of sedimentary colums and Narchitecture interpretation of Late Quaternary deposits in the SS-HA cross-section 85 Figure 3.8 Stratigraphic correlarion of sedimentary colums and architecture interpretation of LateQuaternary deposits in the DF-SU cross-section 86 Figure 3.9 Stratigraphic correlarion of sedimentary colums and architecture interpretation of Late Quaternary deposits in the DU-SL cross-section 87 Figure 3.10 Palaeogeographic evolution of the last interglacial sequence (SQ1) from 16 to 1 ka BP 93 Figure 3.11Restored geometry of basin- filling units along the SS-HA transect during the main steps of basin evolution 98 Figure 3.12 Iso- depth contours of the sequence boundary 2 in Changhua coastal plain 99 Figure 3.13 Paleogeographic evolution of Changhua Coastal Plain in late last glacial (between 40 and 27ka) 101 Figure 3.14 Sediment accumulation curves (age-depth plots) of the SS, DF, HT, HB, FY, SH, HH, ST YA, HA, FR and GH cores. Blue curve is the Equatorial Pacific relative sea- level curve take from Waelbroeck et al., 2002 105 Figure 3.15 Euatatic sea-level curve referred in this study 108 Figure 4.1 Schematic sedimentary facies model of study area 114

    Angelier, J., 1986. Geodynamics of Eurasia-Philippine sea plate boundary. preface. Tectonophysics 125, IX–X.
    Amorosi, M. C., Colalongo, G. P., Sarti, G., and Vaiani, S. C., 2003. Facies Architecture and Latest Pleistocene-Holocene Depositional History of the Po Delta (Comacchio Area), Italy. Journal of Geology, 111, 39-56.
    Bird, M. I., Fifield, T. S., The, T. S., Chang, C. H., Shirlaw. & Lamarack, K. (2007) An inflection in the rate of early mid-Holocene eustatic sea-level rise curve from Singapore. Estuarine Coastal and Shelf Sci., 71, 523-536.
    Boggs, S. Jr., 2006. Principles of Sedimentology and Stratigraphy 4th Edition. Prentice Hall, 726pp.
    Bowin, C., Lu, R. S., Lee, C. S., and Schouten, H., 1978. Plate convergence and accretion in Taiwan-Luzon region. American Association Petrology Geology Bulletin 62, 1645-1672.
    Burbank, D. W. and Anderson, R. S. (2001) Tectonic Geomorphology. Blackwell Science, 274pp.
    Carlason, 2008. Why there was not a Younger Dryas-like event during the Penultimate Deglaciation. Quaternary Science Reviews 27, 882-887.
    Carter, R. M., Abbott, S. T., Fulthorpe C. S., Haywick, D. W. and Henderson, R. A., 1991. Application of global sea-level and sequence-stratigraphic models in Southern Hemisphere Neogene Strata from New Zealand. In: Macdonald, D. I. M. ed. Sedimentation, Tectonics and Eustacy: Sea-level Changes at Active Margins. Blackwell Scientific Publications, pp.41-65.
    Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan. American Journal Science, 272, 389-422.
    Chen, H. W., Chen, M. M., and Shih, T. S., 2004. 1:50000 geological maps of Taiwan,-sheet 24, Nantou, Central Geol. Surv. , Taipei, Taiwan. (In Chinese with English abstract).
    Chen H. W., Lee T. Y. & Wu L. C., 2010. High-resolution sequence stratigraphic analysis of late Quaternary deposits of the Changhua Coastal Plain in the frontal arc-continent collision belt of central Taiwan. J. Asian Earth Sci., 39, 192-213.
    Chen, W. F., Yuan P. B., 1999. A preliminary study on sedimentary environments of Choshui fan-delta. Journal of the Geological Society of China 42, 2, 269-288.
    Chen, W. S., Kenneth D. Ridgway; Chen, Y. G.; Shea, K. S.; Yeh, M. G. ; Horng, C. S., 2001. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Geological Society of America Bulletin 113, 10, 1249-1271.
    Chen, Y. G. & Liu T. K. (2000) Holocene uplift and subsidence along an active tectonic margin, southwestern Taiwan. Quater. Sci. Rev., 19, 923-930.
    Clapperton, C. M., 1995. Fluctuations of local glaciers at the termination of the Pleistocene: 18-8 Ka BP. Quaternary International 28, 42-50.
    Clark, P. U., Pisias, N. G., Stocker, T. F., Weaver, A. J., 2002. The role of the thermochaline circulation in abrupt climate change. Nature 415, 863-869.
    Collinson, J. D., 1969. The sedimentology of the Grindslow Shales and the Kinderscout Grit: a deltaic complex in the Namurian of northern England. Journal of Sedimentary Petrology 39, 194-221.
    Collinson, J. D. (1996) Alluvial sediments. In : Sedimentary Environments: Process, Facies and Stratigraphy (Ed. By Reading H. G.), Blackwell Science Oxford, pp.154-231.
    Covey, M. (1984) Lithofacies analysis and basin reconstruction, Plio-Pleistocene. western Taiwan foredeep. Pet. Geol. Taiwan, 20, 53-83.
    Dalrymple, R. W., Zaitlin, b. A. and Boyd, R., 1992. Estuarine facies model: Conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62, 1130-1146.
    Deffontaines, B, Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F., Lee, C. T., Deramond, J., Lee, J. F., yu, M. S., and Liew, P. M., 1997. Quaternary transfer faulting in the Taiwan Foothills: evidence from a multisource approach. Tectonphysics 274, 61-28.
    Fletcher, C. H., Knebel, H. J., and Kraft, J. C. (1990) Holocene evolution of an estuarine coast and wetlands. Geological Society of American Bulletin, 102, 283-297.
    Foyle, A. M. and Oertel, G. F., 1997. Transgressive systems tract development and incised-valley fills within a Quaternary estuary-shelf system: Virginia inner shelf, USA. Marine Geology 137, 227-249.
    Galloway, W. E. and Hobday, D. K., 1996. Terrigenous Clastic Depositional Systems.2nd ed. Springer-Verlag, Berlin Heidelberg New York, 489pp.
    Haq, B. U., 1991. Sequence stratigraphy, sea-level change, and significance for the deep sea, In: Macdonald, D. I. M. eds., Sedimentation, Tectonics and Eustacy: Sea-level Changes at Active Margins. Blackwell Scientific Publications, pp.3-39.
    Hanebuth, T., Stategger, K. & Grootes, P. M. (2000) Rapid flooding of the Sunda Shelf: a late glacial sea-level record. Science, 288, 1033-1035.
    Heward, A. P., 1978. Alluvial fan sequence and mega sequence models: with examples from Westphalian D-Stephanian B coalfields, Northern Spain. In: Miall, A. D. (Ed.), Fluvial Sedimentology. Mem. Can. Soc. Petrol. Geol., 5, pp.669-702.
    Huang, C. Y., 1994. The analysis of foraminfera fossils and stratigraphic correlations: The CGS Report of the1st Stage of Groundwater Mointoring Network Plan for Taiwan, 82pp. (in Chinese with English abstract).
    Huang, C. Y., 1995. The analysis of foraminfera fossils and stratigraphic correlations: The CGS Report of the1st Stage of Groundwater Mointoring Network Plan for Taiwan, 56pp. (in Chinese with English abstract).
    Hughen, K. A., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Kromer, B., McCormac, F. G., Manning, S. W., Ramsey, C., Reimer, P. J., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., Weyhenmeyer, C. E. (2004) Marine04 Marine radiocarbon age calibration, 26-0 ka BP. Radiocarbon 46: 1059-1086.
    Kao, H. and Chen, W. P., 2000. The Chi-chi earthquake sequence: active out-of-sequence thrust faulting in Taiwan. Science 288, 2346-2349.
    Lee, J.C., Lu, C.Y., Chu, H.T., Delcaillau, B., Angelier, J., and Deffontaines, B., 1996. Active deformation and paleostress analysis in the Pakua anticline area, western Taiwan. TAO 7, 4, 431-446.
    McGowen, J. H. and Groat C. G., 1971. Van Horn Sandstone, West Texas: An alluvial fan model for mineral exploration. Texas Bur. Econ. Geology Rept. Inv. 72, Austin, Tex., 57pp.
    Liew, P. M. (1988) Quaternary stratigraphy in western Taiwan: Palynological correlation, Proc. Geol. Soc. China, 31 (1), 169-180.
    Lin, A. T., Watts, A. B. & Hesselbo, S. P. (2003) Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res., 15, 453-478.
    Lu, C. Y. (1994) Neotectonics in the foreland thrust belt of Taiwan. Pet. Geol. Taiwan, 29, 1-26.
    Miall, A. D., 1978. Lithofacies types and vertical profile models of braided river deposits, a summary. In: Miall, A. D. (Ed.), Fluvial Sedimentology. Mem. Can. Soc. Petrol. Geol., 5, pp.597-604.
    Moutrehreau, F., Lacombe, O., Deffontaines, B., Angelier, J., Chu, H. T. and Lee, C. T. (1999) Quaternary transfer faulting and belt front deformation at Pakuashan (western Taiwan), Tectonics, 18(2), 215-230.
    Nilesn, T. H., 1982. Alluvial fan deposits. In: Scholle, P. A., Spearing, D. (Eds.), Sandstone Depositional Environments. Am. Assoc. Pet. Geol. Mem. 31, 49-86.
    Pemberton, S. G., Maceachem, J. A. and Frey, R. W. (1992) Trace fossil facies models: environmental and allostratigraphic significance. In: Facies Models: Response to Sea Level Change, 3rd Edition (Ed. by Walker. R. G. and James, N. P.), Geol. Assoc. Canada, pp. 47-72.
    Pizzuto, J. E. (1987) Sediment diffusion during overbank flows. Sedimentology, 34, 301-317.
    Posamentier, H. W., C. P. Summerhayes, B. U. Haq, and G. P. Allen (eds.), 1993 Sequence stratigraphy and facies associations: International Association Sedimentologists Spec. Pub. 18, Blackwell Scientific Publications, Oxford, 644 pp.
    Postma, G., 1990. Depositional architecture and facies of river and fan deltas. In: Colella, A., David, B. P. (Eds.), Coarsed-grained Deltas. Int. Assoc. Sedimentol. Spec. Publ. 10, 13-28.
    Reading, H. G, 1996. Sedimentary Environments: Process, Facies and Stratigraphy. Blackwell Science Oxford, 688pp.
    Reading, H. G and Collinon, J. D., 1996. Clastic coasts, in Reading H. G., (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy. Blackwell Science Oxford, pp.154-231.
    Reading, H. G and Levell, B. K., 1996. Controlls on the sedimentary rock record, In: Reading H. G. (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy. Blackwell Science, pp.5-36.
    Reineck, H. G. and Wunderlich, F., 1968. Classification and origin of flaser and lenticular bedding. Sedimentology 11, 99-104.
    Reineck, H. G. and Singh, I. B., 1980. Depositional Sedimentary Environment, 2nd edn. Springer-Verlag, New York, 549pp.
    Reinson, G. E., 1984. Barrier-island and associated straind plain system. In:Walker, R. G. (Ed.), Facies Models: Geological Association of Canada, Geoscience Canada Reprint Serirs 1, pp.119-140.
    Reinson, G. E., 1992. Transgressive barrier island and estuarine systems, In: Walker. R. G. and James, N. P. eds., Facies Models: Response to Sea Level Change, 3rd Edition: Geological Association of Canada, pp.179-194.
    Ritter, J. B., Miller, J. R., Enzel, Y., Wells, S. G., 1995. Reconciling the roles of tectonism and climate in Quaternary alluvial fan evolution. Geology 23, 245-248.
    Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C. J. H., Blackwell, P. G., Buck, C. E., Burr, G. S., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Hogg, A. G., Hughen, K. A., Kromer, B., McCormac, F. G., Manning, S. W., Ramsey, C. B., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E. (2004) IntCal04 Terrestrial radiocarbon age calibration, 26 - 0 ka BP. Radiocarbon 46, 1029-1058.
    Schreiber, A. (1965) On the geology of the Cenozoic geosyncline in middle and northern Taiwan (China) and its petroleum potentialities: Pet. Geol. Taiwan, 4, 25- 87.
    Simoes, M., Avouac, J. P., Chen Y.-G., Singhvi, Wang, A. K.C.-Y. Jaiswal, M.,Y.-C. Chan, and Bernard, S., 2007a. Kinematic analysis of the Pakuashan fault tip fold, west central Taiwan: Shortening rate and age of folding inception: Journal of Geophysical Research 112, B03S14, doi:10.1029/2005JB004198.
    Simoes, M., Avouac, J. P., and Chen Y.-G., 2007b. Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan: Journal of Geophysical Research 112, B03S10, doi:10.1029/2005JB004200.
    Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., and Spurk, M. (1998) INTCAL98 Radiocarbon age calibration 24,000 - 0 cal BP. Radiocarbon 40, 1041-1083.
    Stuiver, M., Reimer, P. J., and Reimer, R. W. (2005) CALIB 6.0. [WWW program and documentation].
    Sun, S. C. (1965) Geology and petroleuln potentialities of the Chingshui-Yuanlin area, Pet. Geol. Taiwan, 4, 161- 173.
    Suppe, J., 1981. Mechanics of mountain building in Taiwan. Mem. Geol. Soc. China 4, 67–89.
    Teng, L.-S. (1987) Stratigraphy records of the late Cenozoic Penglaiorogeny of Taiwan. Acta Geol. Taiwan 25, 205–224.
    Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysic 183, 57-76.
    Tensi, J., Mouthereau, F. & Lacombe, O. (2006) Lithospheric bulge in the West Taiwan Basin. Basin Res., 18, 277-299.
    Tsai, H., Hseu, Z. Y., Huang, W. S. and Chen, Z. S., 2007. Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan. Geomorphology 83, 14-28.
    Tsai, Y. B., 1986. Seismotectonics of Taiwan.Tectonophysics 125, 17–38.
    van Wagoner, J. C., Mitchem, R. M., Campion, K. M., and Rahmanian, V. D., 1990. Siliciclastic sequence stratigraphy in well logs, core, and outcrop: concepts for high-resolution correlation of time and facies: Amer. Assoc. Petrol. Geol. Methods in Exploration Series 7, 55pp.
    Waelbroeck C., L., Michel E., Duplessy J.C., Mcmanus J.F., Lambeck K., Balbon E., and Labracherie M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records: Quanternary Science Reviews 21, 295-305.
    Walker, R. G., 1984. Facies models : Geological Association of Canada, 317pp.
    Walker, R. G. and James, N. P., 1992. Facies models – Response to sea level changes. Geol. Assoc. of Canada, 407pp.
    Walker, R. G., 1992. Facies, Facies models and modern stratigraphic concepts, In: Walker. R. G. and James, N. P. (Eds.), Facies Models: Response to Sea Level Change, 3rd Edition: Geological Association of Canada, pp.1-13.
    Yu, S. B., Chen, H. Y. & Kuo, L. C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.

    下載圖示
    QR CODE