研究生: |
林鳳君 Lin, Feng-Chun |
---|---|
論文名稱: |
入侵與原生淡水龜的數感認知比較 A Comparison of Numerical Cognition between Invasive and Native Turtles |
指導教授: |
林思民
Lin, Si-Min |
口試委員: |
李佩珍
Lee, Pei-Jen Shaner 焦傳金 Chiao, Chuan-Chin 林思民 Lin, Si-Min |
口試日期: | 2021/06/23 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 認知 、行為彈性 、入侵種 、學習能力 、爬行動物 、韋伯律 |
英文關鍵詞: | cognition, flexibility, invasive species, learning ability, reptile, Weber's law |
DOI URL: | http://doi.org/10.6345/NTNU202101352 |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
烏龜能辨別數量嗎?這個問題不只是認知心理學的範疇,更與行為生態息息相關。例如雄性會選擇加入雌性個體比較多的群體;領域的佔有者也會依據入侵者的數量決定要逃跑還是奮力一搏,這些行為的決策都奠基於動物具有數量感知能力。在魚類、鳥類和哺乳類上都已有大量研究投入,唯獨爬行動物是否能辨別數量,研究仍非常罕見。在第一章我以臺灣原生淡水龜種斑龜為研究對象,共分為兩個實驗:實驗一為一系列比率由低到高的順序進行的五組測驗;實驗二則是包含共三十二種數量組合的混合測驗。訓練斑龜基於「大於」的抽象規則來辨別數量,而非認特定數量或圖形。研究結果顯示,斑龜能夠成功辨別本研究最難的數字組合:九比十,也發現其數感認知表現符合韋伯率,即兩數量間的比率越高則代表辨別難度越難因此表現變差。另外其表現隨著天數而顯著提升,顯示斑龜具有學習能力。第二章我用全球百大入侵種之一的紅耳龜進行與第一章一樣的實驗,發現當面對必須靈活運用抽象概念的測試時,入侵種的數感表現優於原生龜,顯示紅耳龜可能有較佳的行為彈性。本研究中烏龜所展現的優異數感能力接露爬行動物的認知能力很可能是被嚴重低估的,也暗示其生態行為決策機制可能並不簡單,本論文也是首度試圖透過數感能力連結認知能力與入侵生物學的研究。
Quantity discrimination, the ability to discriminate a magnitude of difference or discrete numerical information, plays a key role in animal behavior. While quantitative ability has been well documented in fishes, birds, mammals, and even invertebrates and in previously unstudied invertebrates and amphibians, it is still poorly understood in reptiles and has never been tested in an aquatic turtle despite the fact that evidence is accumulating that reptiles possess cognitive skills and learning ability. In Chapter 1, I addressed this deficiency in reptiles and investigated the quantitative ability of an Asian freshwater turtle, Mauremys sinensis, using red cubes on a white background in a trained quantity discrimination task. While spontaneous quantity discrimination methods are thought to be more ecologically relevant, training animals on a quantity discrimination task allows more comparability across taxa. I discovered that turtles could successfully discriminate quantities up to of 9 versus 10, and their quantitative performance followed Weber’s law. The gradual improvement of their success rate suggested that turtles possess learning ability. In Chapter 2, I conducted the same experimental design on the notorious invasive red-eared slider, Trachemys scripta elegans. My analyses showed that the invasive sliders showed better quantitative performance when switching to the tests which they had to use the abstract concept of “greater-than” and to abandon their previous choice. The sliders also had better quantitative performance in the initial phase when facing complicated testing pairs. These results revealed that the red-eared slider has higher flexibility than the native M. sinensis. My thesis reveals that the intelligence of reptiles has been long-term underestimated, and provides the first insight into the potentiality of quantitative ability to address the link between cognition and invasion biology.
Agrillo, C. (2015). Numerical and arithmetic abilities in non-primate species. R. Cohen Cadosh & Ann Dowker (eds.), The Oxford Handbook of Numerical Cognition, 214-236.
Agrillo, C., & Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of neuroscience methods, 234, 82-91.
Agrillo, C., & Bisazza, A. (2018). Understanding the origin of number sense: a review of fish studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20160511.
Agrillo, C., & Bisazza, A. (2018). Understanding the origin of number sense: a review of fish studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20160511.
Agrillo, C., Petrazzini, M. E. M., Piffer, L., Dadda, M., & Bisazza, A. (2012). A new training procedure for studying discrimination learning in fish. Behavioural brain research, 230(2), 343-348.
Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554(7692), 364-367.
Baker, H. G., & Stebbins, G. L. (1965). genetics of colonizing species, proceedings. In International Union of Biological Sciences Symposia on General Biology 1964: Asilomar, Calif.). Academic Press.
Bezzina, C. N., Amiel, J. J., & Shine, R. (2014). Does invasion success reflect superior cognitive ability? A case study of two congeneric lizard species (Lampropholis, Scincidae). PLoS One, 9(1), e86271.
Bisazza, A., Agrillo, C., & Lucon-Xiccato, T. (2014). Extensive training extends numerical abilities of guppies. Animal Cognition, 17(6), 1413-1419.
Blackburn, T. M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., Jarošík, V., ... & Richardson, D. M. (2011). A proposed unified framework for biological invasions. Trends in ecology & evolution, 26(7), 333-339.
Bock, D. G., Caseys, C., Cousens, R. D., Hahn, M. A., Heredia, S. M., Hübner, S., ... & Rieseberg, L. H. (2015). What we still don't know about invasion genetics. Molecular ecology, 24(9), 2277-2297.
Bolnick, D. I., Amarasekare, P., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M., ... & Vasseur, D. A. (2011). Why intraspecific trait variation matters in community ecology. Trends in ecology & evolution, 26(4), 183-192.
Buckingham JN, Wong BBM, Rosenthal GG. Shoaling decision in female swordtails: how do fish gauge group size? Behaviour. 2007;144:1333–1346. https://doi.org/10.1163/156853907782418196
Burghardt, G. M. (1977). Learning processes in reptiles. Herpetologica, 2, 175-196.
Butterworth, B., Gallistel, C. R., & Vallortigara, G. (2018). Introduction: the origins of numerical abilities.
Cadi, A., & Joly, P. (2003). Competition for basking places between the endangered European pond turtle (Emys orbicularis galloitalica) and the introduced red-eared slider (Trachemys scripta elegans). Canadian Journal of Zoology, 81(8), 1392-1398.
Cadi, A., & Joly, P. (2004). Impact of the introduction of the red-eared slider (Trachemys scripta elegans) on survival rates of the European pond turtle (Emys orbicularis). Biodiversity & Conservation, 13(13), 2511-2518.
Cantlon, J. F., & Brannon, E. M. (2007). How much does number matter to a monkey (Macaca mulatta)?. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 32.
Cerasoli, F., Iannella, M., & Biondi, M. (2019). Between the hammer and the anvil: how the c ombined effect of global warming and the non-native common slider could threaten the European pond turtle. Management of Biological Invasions, 10(3), 428.
Chapple, D. G., Simmonds, S. M., & Wong, B. B. (2012). Can behavioral and personality traits influence the success of unintentional species introductions?. Trends in ecology & evolution, 27(1), 57-64.
Chow, P. K. Y., Lurz, P. W., & Lea, S. E. (2018). A battle of wits? Problem-solving abilities in invasive eastern grey squirrels and native Eurasian red squirrels. Animal Behaviour, 137, 11-20.
Chung, M., Goulet, C. T., Michelangeli, M., Melki-Wegner, B., Wong, B. B., & Chapple, D. G. (2017). Does personality influence learning? A case study in an invasive lizard. Oecologia, 185(4), 641-651.
Cole, E. F., Morand-Ferron, J., Hinks, A. E., & Quinn, J. L. (2012). Cognitive ability influences reproductive life history variation in the wild. Current Biology, 22(19), 1808-1812.
Cross, F. R., & Jackson, R. R. (2017). Representation of different exact numbers of prey by a spider-eating predator. Interface Focus, 7(3), 20160035.
DeLong, C. M., Barbato, S., O’Leary, T., & Wilcox, K. T. (2017). Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behavioural processes, 141, 172-183.
Ditz, H. M., & Nieder, A. (2016). Numerosity representations in crows obey the Weber–Fechner law. Proceedings of the Royal Society B: Biological Sciences, 283(1827), 20160083.
Emmerton, J., & Delius, J. (1993). Beyond sensation: Visual cognition in pigeons (pp. 377-390).
Foucaud, J., Moreno, C., Pascual, M., Rezende, E. L., Castaneda, L. E., Gibert, P., & Mery, F. (2016). Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability. Ecology and evolution, 6(6), 1725-1736.
Gatto, E., Lucon-Xiccato, T., Savaşçı, B. B., Dadda, M., & Bisazza, A. (2017). Experimental setting affects the performance of guppies in a numerical discrimination task. Animal cognition, 20(2), 187-198.
Gazzola, A., Vallortigara, G., & Pellitteri-Rosa, D. (2018). Continuous and discrete quantity discrimination in tortoises. Biology letters, 14(12), 20180649.
Gellermann, L. W. (1933). Chance orders of alternating stimuli in visual discrimination experiments. The journal of genetic psychology, 42, 206-208.
Gómez-Laplaza, L. M., & Gerlai, R. (2011). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Animal cognition, 14(1), 1-9.
Greggor, A. L., Clayton, N. S., Phalan, B., & Thornton, A. (2014). Comparative cognition for conservationists. Trends in Ecology & Evolution, 29(9), 489-495.
Griffin, A. S., & Diquelou, M. C. (2015). Innovative problem solving in birds: a cross-species comparison of two highly successful passerines. Animal Behaviour, 100, 84-94.
Hanus, D., & Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus): the effect of presenting whole sets versus item-by-item. Journal of Comparative Psychology, 121(3), 241.
Henik, A., Gliksman, Y., Kallai, A., & Leibovich, T. (2017). Size perception and the foundation of numerical processing. Current Directions in Psychological Science, 26(1), 45-51.
Hettena, A. M., Munoz, N., & Blumstein, D. T. (2014). Prey responses to predator's sounds: a review and empirical study. Ethology, 120(5), 427-452.
Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360(6393), 1124-1126.
Huebner, F., Fichtel, C., & Kappeler, P. M. (2018). Linking cognition with fitness in a wild primate: fitness correlates of problem-solving performance and spatial learning ability. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170295.
Jarić, I., Jaćimović, M., Cvijanović, G., Knežević-Jarić, J., & Lenhardt, M. (2015). Demographic flexibility influences colonization success: profiling invasive fish species in the Danube River by the use of population models. Biological invasions, 17(1), 219-229.
Jordan, K. E., & Brannon, E. M. (2006). Weber's Law influences numerical representations in rhesus macaques (Macaca mulatta). Animal cognition, 9(3), 159-172.
Krusche, P., Uller, C., & Dicke, U. (2010). Quantity discrimination in salamanders. Journal of Experimental Biology, 213(11), 1822-1828.
Lee, K. H., Chen, T. H., Shang, G., Clulow, S., Yang, Y. J., & Lin, S. M. (2019). A check list and population trends of invasive amphibians and reptiles in Taiwan. ZooKeys, 829, 85.
Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the world's worst invasive alien species: a selection from the global invasive species database (Vol. 12). Auckland: Invasive Species Specialist Group.
Lucon-Xiccato, T., Gatto, E., & Bisazza, A. (2018). Quantity discrimination by treefrogs. Animal behaviour, 139, 61-69.
Lyon BE. Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature. 2003;422:495–499. https://doi.org/10.1038/nature01505
Madden, J. R., Langley, E. J., Whiteside, M. A., Beardsworth, C. E., & van Horik, J. O. (2018). The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170297.
McComb K, Packer C, Pusey A Roaring and numerical assessment in the contests between groups of female lions, Panther leo. Anim Behav. 1994;47:379–387. https://doi.org/10.1006/anbe.1994.1052
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 320.
Miletto Petrazzini, M. E., Bertolucci, C., & Foà, A. (2018). Quantity discrimination in trained lizards (Podarcis sicula). Frontiers in psychology, 9, 274.
Miletto Petrazzini, M. E., Fraccaroli, I., Gariboldi, F., Agrillo, C., Bisazza, A., Bertolucci, C., & Foà, A. (2017). Quantitative abilities in a reptile (Podarcis sicula). Biology Letters, 13(4), 20160899.
Milles, A., Dammhahn, M., & Grimm, V. (2020). Intraspecific trait variation in personality‐related movement behavior promotes coexistence. Oikos, 129(10), 1441-1454.
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519-1520.
Parker, J. D., Torchin, M. E., Hufbauer, R. A., Lemoine, N. P., Alba, C., Blumenthal, D. M., ... & Wolfe, L. M. (2013). Do invasive species perform better in their new ranges?. Ecology, 94(5), 985-994.
Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological science, 17(5), 407-413.
Plotnik, J. M., Brubaker, D. L., Dale, R., Tiller, L. N., Mumby, H. S., & Clayton, N. S. (2019). Elephants have a nose for quantity. Proceedings of the National Academy of Sciences, 116(25), 12566-12571.
Polo‐Cavia, N., López, P., & Martín, J. (2008). Interspecific differences in responses to predation risk may confer competitive advantages to invasive freshwater turtle species. Ethology, 114(2), 115-123.
Polo-Cavia, N., López, P., & Martín, J. (2011). Aggressive interactions during feeding between native and invasive freshwater turtles. Biological Invasions, 13(6), 1387-1396.
Roberts, W. A., & Mitchell, S. (1994). Can a pigeon simultaneously process temporal and numerical information?. Journal of Experimental Psychology: Animal Behavior Processes, 20(1), 66.
Roudez, R. J., Glover, T., & Weis, J. S. (2008). Learning in an invasive and a native predatory crab. Biological invasions, 10(8), 1191-1196.
Schirmer, A., Hoffmann, J., Eccard, J. A., & Dammhahn, M. (2020). My niche: individual spatial niche specialization affects within-and between-species interactions. Proceedings of the Royal Society B, 287(1918), 20192211.
Sol, D., & Lefebvre, L. (2000). Behavioural flexibility predicts invasion success in birds introduced to New Zealand. Oikos, 90(3), 599-605.
Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal behaviour, 63(3), 495-502.
Stancher, G., Rugani, R., Regolin, L., & Vallortigara, G. (2015). Numerical discrimination by frogs (Bombina orientalis). Animal Cognition, 18(1), 219-229.
Stanford, C. B., Iverson, J. B., Rhodin, A. G., van Dijk, P. P., Mittermeier, R. A., Kuchling, G., ... & Walde, A. D. (2020). Turtles and tortoises are in trouble. Current Biology, 30(12), R721-R735.
Sutter, M., & Kawecki, T. J. (2009). Influence of learning on range expansion and adaptation to novel habitats. Journal of Evolutionary Biology, 22(11), 2201-2214.
Szabo, B., Damas-Moreira, I., & Whiting, M. J. (2020). Can cognitive ability give invasive species the means to succeed? A review of the evidence. Frontiers in ecology and evolution, 8(187).
Szabo, B., Noble, D. W., & Whiting, M. J. (2021). Learning in non‐avian reptiles 40 years on: advances and promising new directions. Biological reviews, 96(2), 331-356.
Taniguchi, M., Lovich, J. E., Mine, K., Ueno, S., & Kamezaki, N. (2017). Unusual population attributes of invasive red-eared slider turtles (Trachemys scripta elegans) in Japan: do they have a performance advantage?. Aquatic Invasions, 12(1).
Tanner, C. J. (2006). Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila. Proceedings of the Royal Society B: Biological Sciences, 273(1602), 2737-2742.
Thornton, A., Isden, J., & Madden, J. R. (2014). Toward wild psychometrics: linking individual cognitive differences to fitness. Behavioral Ecology, 25(6), 1299-1301.
Tomonaga, M. (2008). Relative numerosity discrimination by chimpanzees (Pan troglodytes): evidence for approximate numerical representations. Animal cognition, 11(1), 43-57.
Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal cognition, 6(2), 105-112.
Webb, J. K., Letnic, M., Jessop, T. S., & Dempster, T. (2014). Behavioural flexibility allows an invasive vertebrate to survive in a semi-arid environment. Biology letters, 10(2), 20131014.
Wilkinson, A., & Huber, L. (2012). Cold-blooded cognition: reptilian cognitive abilities. In The Oxford handbook of comparative evolutionary psychology (pp. 129-141). Oxford: Oxford University Press.
Wilkinson, A., Kuenstner, K., Mueller, J., & Huber, L. (2010). Social learning in a non-social reptile (Geochelone carbonaria). Biology letters, 6(5), 614-616.
Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees?. Animal Behaviour, 61(6), 1203-1216.
Wong, B., Rosenthal, G., & Buckingham, J. (2007). Shoaling decisions in female swordtails: how do fish gauge group size?. Behaviour, 144(11), 1333-1346.
Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L., & Russello, M. A. (2010). Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology & Evolution, 22(4), 393-404.
Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L., & Russello, M. A. (2010). Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethology Ecology & Evolution, 22(4), 393-404.
Yang, T. I., & Chiao, C. C. (2016). Number sense and state-dependent valuation in cuttlefish. Proceedings of the Royal Society B: Biological Sciences, 283(1837), 20161379.