研究生: |
黃奕翔 Huang, Yi-Hsiang |
---|---|
論文名稱: |
運動誘發延遲性肌肉痠痛後使用充氣加壓按摩對痠痛指數及下肢肌力表現之效益 Effects of intermittent pneumatic compression on lower limbs muscle strength and muscle pain after exercise-induced delayed onset muscle soreness |
指導教授: |
王鶴森
Wang, Ho-Seng |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 運動後恢復 、運動誘發肌肉損傷 、運動表現 |
英文關鍵詞: | recovery of exercise, exercise-induced muscle damage, sports performance |
DOI URL: | http://doi.org/10.6345/NTNU202100029 |
論文種類: | 學術論文 |
相關次數: | 點閱:331 下載:34 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:快速消除運動後的疲勞為近來熱門之研究議題,其中間歇充氣加壓按摩 (intermittent pneumatic compression, IPC) 被視為一種積極促進運動後恢復的方法,惟其在運動誘發延遲性肌肉痠痛後的效益還有待確認。方法:本研究招募18名男性 (年齡:23 ± 2.8歲) 進行70% V̇O2max之30分鐘下坡跑運動以誘發延遲性肌肉痠痛,採隨機方式將受試者雙腳分為實驗腳 (IPC) 及控制腳 (CON),IPC腳於運動後立即與運動後24、48小時各接受20分鐘IPC處理,CON腳採完全靜態休息。所有受試者於運動前、運動後24小時、運動後48小時及每次實驗處理後,記錄雙腳痠痛指數及關節活動度,隨後接受每秒60゚與180゚之下肢等速向心、離心肌力表現測驗。結果: (一) 痠痛指數:運動後立即處理後之痠痛指數IPC顯著低於CON (5.3 ± 1.2 vs. 6.2 ± 1.1分);運動後24小時處理後IPC顯著低於CON (6.2 ± 1.6 vs. 7.0 ± 1.4分);運動後48小時之安靜值及處理後IPC也皆顯著低於CON (7.2 ± 1.8 vs. 7.5 ± 1.8;6.9 ± 1.9 vs. 7.4 ± 1.7分) (p < .05),其餘各時間點兩腳之痠痛指數皆無顯著差異。(二) 關節活動度:運動後24及48小時處理後IPC皆顯著高於CON (99.5 ± 15.6度 vs. 89.5 ± 18.8度;99 ± 15.1度 vs. 92.5 ± 17.7度);運動後48小時之安靜值IPC也顯著高於CON (94 ± 18.8度 vs. 89.5 ± 18.8度) (p < .05),其餘各時間點兩腳之關節活動度皆無顯著差異。(三) 肌力指標:所有肌力指標之交互作用皆未達顯著,且每秒60゚及每秒180゚下肢等速向心、離心肌力的處理主要效果也皆未達顯著。結論:運動後立即實施間歇充氣加壓按摩有助於舒緩肌肉痠痛及改善關節活動度,但未能減緩運動誘發延遲性肌肉痠痛所伴隨之肌力流失現象。
Background: Research topics about fast recovery strategies following exercise have become popular recently. Intermittent pneumatic compression (IPC) is regarded as a method to actively boost recovery after exercise, but whether it will be effective after exercise-induced delay onset muscle soreness remains questionable. Methods: 18 males (age: 23 ± 2.8 years) were recruited to participate in a 30-minute downhill running of 70% V̇O2max to induce delayed onset muscle soreness, and the participants' two legs were randomly divided into experimental leg (IPC) and control leg (CON). The IPC leg received 20 minutes of IPC treatment immediately after exercise as well as at 24 and 48 hours after exercise. At the same time, the CON leg completely rested. Perceived soreness and range of motion of the two legs were recorded before exercise, 24 hours after exercise, 48 hours after exercise and after each experimental treatment, then 60゚/s and 180゚/s lower extremity isokinetic concentric and eccentric contraction were tested as muscle strength. Results: (1) perceived soreness: IPC were significantly lower than CON after the treatment immediately after exercise (5.3 ± 1.2 vs. 6.2 ± 1.1) and 24 hours after exercise (6.2 ± 1.6 vs. 7.0 ± 1.4 points). 48 hours after exercise, IPC were also significantly lower than CON before (7.2 ± 1.8 vs. 7.5 ± 1.8) and after treatment (6.9 ± 1.9 vs. 7.4 ± 1.7 points). (2) Range of motion: 24 and 48 hours after exercise, IPC were significantly higher than CON after treatment (99.5 ± 15.6°vs. 89.5 ± 18.8°; 99 ± 15.1° vs. 92.5 ± 17.7°). IPC was also significantly higher than CON before treatment 48 hours after exercise (94 ± 18.8° vs. 89.5 ± 18.8°). There were no significant differences in range of motion between two legs at rest given time points. (3) Muscle strength: The treatment × time interaction of all muscle strength indicators were not significant (p > .05). Treatment main effects on 60゚/s and 180゚/s isokinetic concentric and eccentric contraction were not significant either (p > .05). Conclusion: Applying intermittent pneumatic compression immediately after exercise could relieve muscle soreness and improve range of motion, but fails to alleviate the loss of muscle strength associated with exercise-induced delayed onset muscle soreness.
王建睎、何仁育、林明儒 (2017)。短期Beta-丙胺酸增補對下坡跑運動引起肌肉損傷的影響。運動生理暨體能學報,23-36。doi: 10.6127/JEPF.2017.25.03
吳家慶、謝伸裕 (2008)。動態恢復強度對損傷肌肉之功能及跑步經濟性的影響。體育學報,41(4),1-14。doi: 10.6222/pej.4104.200812.0801
張政鈺、陸康豪、詹貴惠 (2014)。間歇充氣加壓對運動後恢復之效果。中華體育季刊,28(3),211-218。doi: 10.6223/qcpe.2803.201409.1005
陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,(1),19-32。doi:10.6127/JEPF.2004.01.03
Armstrong, R. B. (1984). Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise, 16(6), 529-538.
Amanda, M. H., Heapy, M. D., Hoffman, H. H., Verhagen, S. W., Thompson, P. D., Fiona, J. S., & Mary, C. C. (2018). A randomized controlled trial of manual therapy and pneumatic compression for recovery from prolonged running – an extended study. Research in Sports Medicine, 26(3), 354-264. doi: 10.1080/15438627.2018.1447469
Benwell, N. M., Sacco, P., Hammond, G. R., Byrnes, M. L., Mastaglia, F. L., & Thickbroom, G. W. (2006). Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Experimental Brain Research, 170(2), 191-198. doi: 10.1007/s00221-005-0195-7
Best, T. M., Hunter, R., Wilcox, A., & Haq, F. (2008). Effectiveness of sports massage for recovery of skeletal muscle from strenuous exercise. Clinical Journal of Sport Medicine, 18(5), 446-460. doi: 10.1097/jsm.0b013e31818837a1
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sport & Exercise, 14(5), 377-381.
Broadie, K. S. (1999). Development of electrical properties and synaptic transmission at the embryonic neuromuscular junction. In International Review of Neurobiology (Vol. 43, pp. 45-67). Academic Press. doi: 10.1016/s0074-7742(08)60540-1
Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness. Sports Medicine, 33(2), 145-164. doi: 10.2165/00007256-200333020-00005
Clarkson, P. M., Byrnes, W. C., McCormick, K. M., Turcotte, L. P., & White, J. S. (1986). Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. International Journal of Sports Medicine, 7(03), 152-155. doi: 10.1055/s-2008-1025753
Chleboun, G. S., Howell, J. N., Baker, H. L., Ballard, T. N., Graham, J. L., Hallman, H. L., ... & Conatser, R. R. (1995). Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Archives of Physical Medicine and Rehabilitation, 76(8), 744-749. doi: 10.1016/s0003-9993(95)80529-x
Clarkson, P. M., & Sayers, S. P. (1999). Etiology of exercise-induced muscle damage. Canadian Journal of Applied Physiology, 24(3), 234-248. doi: 10.1139/h99-020
Cochrane, D. J., Booker, H. R., Mundel, T., & Barnes, M. J. (2013). Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise. International Journal of Sports Medicine, 34(11), 969-74. doi: 10.1055/s-0033-1337944
Crane, J. D., Ogborn, D. I., Cupido, C., Melov, S., Hubbard, A., Bourgeois, J. M., & Tarnopolsky, M. A. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine, 4(119), 119ra13. doi: 10.1126/scitranslmed.3002882
Draper, S. N., Kullman, E. L., Sparks, K. E., Little, K., & Thoman, J. (2020). Effects of intermittent pneumatic compression on delayed onset muscle soreness (DOMS) in long distance runners. International Journal of Exercise Science, 13(2), 75-86.
Farr, T., Nottle, C., Nosaka, K., & Sacco, P. (2002). The effects of therapeutic massage on delayed onset muscle soreness and muscle function following downhill walking. Journal of Science and Medicine in Sport, 5(4), 297-306. doi: 10.1016/s1440-2440(02)80018-4
Friden, J., & Lieber, R. L. (1992). Structural and mechanical basis of exercise induced muscle injury. Medicine & Science in Sport & Exercise, 5, 521-530. doi: 10.1249/00005768-199205000-00005
French, D. N., Thompson, K. G., Garland, S. W., Barnes, C. A., Portas, M. D., Hood, P. E., & Wilkes, G. (2008). The effects of contrast batjing and compression therapy on muscular performance. Medicine & Science in Sport & Exercise, 40(7), 1297-1306. doi: 10.1249/mss.0b013e31816b10d5
Fuglevand, A. J. (1995). The role of the sarcolemma action potential in fatigue. In Fatigue (pp. 101-108). Springer, Boston, MA. doi: 10.1007/978-1-4899-1016-5_8
Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. doi: 10.1152/physrev.2001.81.4.1725
Gleeson, M., Blannin, A. K., Walsh, N. P., Field, C. N., & Pritchard, J. C. (1998). Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 77(3), 292-295. doi: 10.1007/s004210050336
Hing, W. A., White, S. G., Bouaaphone, A., & Lee, P. (2008). Contrast therapy—a systematic review. Physical Therapy in Sport, 9(3), 148-161. doi: 10.1016/j.ptsp.2008.06.001
Howatson, G., van Someren, K. A.(2008). The prevention and treatment of exercise - induced muscle damage. Sports Medicine, 38(6), 483-503. doi: 10.2165/00007256-200838060-00004
Hanson, E., Stetter, K., Li, R., & Thomas, A. (2013). An intermittent pneumatic compression device reduces blood lactate concentrations more effectively than passive recovery after Wingate testing. Journal of Athletic Enhancement, 4, 18-25. doi: 10.4172/2324-9080.1000115
Kent-Braun, J. A. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. European Journal of Applied Physiology and Occupational Physiology, 80(1), 57-63. doi: 10.1007/s004210050558
Kephart, W. C., Mobley, C. B., Fox, C. D., Pascoe, D. D., Sefton, J. M., Wilson, T. J., & Martin, J. S. (2015). A single bout of whole‐leg, peristaltic pulse external pneumatic compression upregulates PGC‐1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue. Experimental Physiology, 100(7), 852-864. doi: 10.1113/EP085160
Lewis, P. B., Ruby, D., & Bush-Joseph, C. A. (2012). Muscle soreness and delayed-onset muscle soreness. Clinics in Sports Medicine, 31(2), 255-262. doi: 10.1016/j.csm.2011.09.009
Martin, J. S., Kephart, W. C., Mobley, C. B., Wilson, T. J., Goodlett, M. D., & Roberts, M. D. (2017). A single 60‐min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6. Clinical Physiology and Functional Imaging, 37(6), 602-609. doi: 10.1111/cpf.12343
Sands, W. A., Murray, M. B., Murray, S. R., McNeal, J. R., Mizuguchi, S., Sato, K., & Stone, M. H. (2014). Peristaltic pulse dynamic compression of the lower extremity enhances flexibility. The Journal of Strength & Conditioning Research, 28(4), 1058-1064. doi: 10.1519/JSC.0000000000000244
Sands, W. A., McNeal, J. R., Murray, S. R., & Stone, M. H. (2015). Dynamic compression enhances pressure-to-pain threshold in elite athlete recovery: exploratory study. The Journal of Strength & Conditioning Research, 29(5), 1263-1272. doi: 10.1519/JSC.0000000000000412
Sheldon, R. D., Roseguini, B. T., Laughlin, M. H., & Newcomer, S. C. (2013). New insights into the physiologic basis for intermittent pneumatic limb compression as a therapeutic strategy for peripheral artery disease. Journal of Vascular Surgery, 58(6), 1688-1696. doi: 10.1016/j.jvs.2013.08.094
Smith, L. L., Keating, M. N., Holbert, D., Spratt, D. J., McCammon, M. R., Smith, S. S., & Israel, R. G. (1994). The effects of athletic massage on delayed onset muscle soreness, creatine kinase, and neutrophil count: a preliminary report. Journal of Orthopaedic & Sports Physical Therapy, 19(2), 93-99. doi: 10.2519/jospt.1994.19.2.93
Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Seitz, L. B., Williamson, B. D., & Haff, G. G. (2016). Maintenance of velocity and power with cluster sets during high-volume back squats. International Journal of Sports Physiology and Performance, 11(7), 885-892. doi: 10.1123/ijspp.2015-0602
Weber, M. D., Servedio, F. J., & Woodall, W. R. (1994). The effects of three modalities on delayed onset muscle soreness. Journal of Orthopaedic & Sports
Physical Therapy, 20(5), 236-242. doi: 10.2519/jospt.1994.20.5.236
Waller, T., Caine, M., & Morris, R. (2006). Intermittent pneumatic compression technology for sports recovery. In The Engineering of Sport 6 (pp. 391-396). Springer, New York, NY. doi: 10.1007/978-0-387-45951-6_70
Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Water immersion: does it enhance recovery from exercise. International Journal of Sports Physiology and Performance, 1(3), 195-206. doi: 10.1123/ijspp.1.3.195
Zelikovski, A., Kaye, C. CL., Fink, G., Spitzer, S. A., & Shapiro, Y. (1993). The effects of the modified intermittent sequential pneumatic device (MISPD) on exercise performance following an exhaustive exercise bout. British Journal of Sports Medicine, 27(4), 255-259. doi: 10.1136/bjsm.27.4.255