簡易檢索 / 詳目顯示

研究生: 郭昭顯
Guo, Jhao-Sian
論文名稱: 開發硫摻雜石墨烯量子點之電漿子胜肽晶片於人工唾液中檢 測人類角細胞蛋白 19 分子
Development of sulfur-doped graphene quantum dots-peptidebased surface plasmon resonance biosensors in spiked artificial saliva to detect recombinant human cytokeratin 19 his protein (NBP2)
指導教授: 邱南福
Chiu, Nan-Fu
口試委員: 陳震宇
Chen, Cheng-Yu
劉子毓
Liu, Tzu-Yu
董國忠
Dong, Guo-Chung
邱南福
Chiu, Nan-Fu
口試日期: 2023/12/26
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 硫摻雜石墨烯量子點表面電漿子共振生物感測器肺癌生物標誌物 NPB2 蛋白
英文關鍵詞: S-GQD, surface plasmon resonance, biosensor, lung cancer biomarker NPB2 protein
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400174
論文種類: 學術論文
相關次數: 點閱:157下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iii 表目錄 viii 圖目錄 ix 第一章 緒論 1 壹、研究動機 1 貳、研究目的 2 第二章 文獻回顧 3 壹、石墨烯概論 3 貳、石墨烯量子點 3 一、石墨烯量子點製備 4 (一)、由上至下 (Top-down) 4 1. 水熱法/溶劑熱 (Hydrothermal /solvothermal method) 5 2. 超聲波法 (Ultrasonic-assisted method) 6 3. 電化學氧化法 (Electrochemical oxidation method) 7 (二)、由下至上 (Bottom-up) 8 1. 熱解法/水熱法 (Pyrolysis method) 8 2. 微波輔助合成法 (Microwave-assisted synthesis method) 9 3. 化學合成法 (Chemical synthesis method) 10 (三)、綠色合成 (Green synthesis) 11 二、原子摻雜GQD 14 (一)、氮摻雜GQD (Nitrogen-GQD) 14 (二)、硼摻雜GQD (Boron-GQD) 15 (三)、硫摻雜 (Sulfur-doping) 16 (四)、共摻雜 (Co-doping) 18 三、 GQD光學特性 18 (一)、吸光度 (Absorbance) 18 (二)、光致發光 (Photoluminescence, PL) 19 四、 GQD之生物應用 22 (一)、GQD之生物相容性 22 (二)、GQD感測器之應用 25 1. PL感測器 25 2. 電化學感測器 28 3. 電致發光感測器 29 參、表面電漿子共振 31 一、SPR簡介 31 二、SPR原理 32 三、SPR的生物應用之分析 34 肆、肺癌檢測及生物標誌物NBP2蛋白介紹 36 一、肺癌簡介 36 二、NBP2簡介 37 三、KRT19 blocking peptide介紹 39 第三章 實驗方法與材料 40 壹、石墨烯量子點及硫摻雜石墨烯量子點的合成 40 一、熱解合成檸檬酸石墨烯量子點 (CA-GQDps) 40 二、熱解合成MPA石墨烯量子點 (MPA -GQDps) 41 三、熱解合成MHA石墨烯量子點 (MHA -GQDps) 42 四、微波輔助合成CA石墨烯量子點 (CA-GQDmas) 43 五、微波輔助合成MPA石墨烯量子點 (MPA-GQDmas) 43 六、微波輔助合成MHA石墨烯量子點 (MHA-GQDmas) 44 貳、感測晶片的製備 45 一、傳統半胱胺酸鹽感測晶片 (Cys-chip) 45 二、硫摻雜石墨烯量子點感測晶片 (MHA-GQD-chip) 46 參、SPR感測肺癌蛋白NBP2之實驗步驟 47 一、傳統緩衝液樣本之檢測 47 二、摻雜人工唾液緩衝液樣本之檢測 48 肆、材料 49 伍、儀器 50 第四章 結果與討論 51 壹、材料分析 51 一、材料結構特性之分析 51 (一)、拉曼光譜之分析 51 1. 拉曼雷射波長的選擇 51 2. 拉曼光譜參數之調整 53 3. 微波輔助合成之拉曼分析 53 (二)、微波合成之傅立葉轉換紅外光譜分析 56 (三)、微波合成之XPS分析 57 (四)、微波合成MHA-GQD之TEM 59 二、GQD光學特性之分析 60 (一)、Uv-vis光譜分析 60 (二)、螢光光譜之分析 61 三、材料穩定性 62 (一)、GQD熱穩定性之分析 62 (二)、GQD懸浮穩定性之分析 62 (三)、GQD的pH定性之分析 63 四、 比較熱解合成法與微波合成法 65 (一)、熱解合成法與微波合成法螢光光譜比較之分析 65 (二)、熱解合成法與微波合成法懸浮穩定性比較之分析 68 貳、生物實驗 69 一、SPR共振角分析與模擬折射率 69 二、MHA-GQDmas150s與peptide結合的螢光光譜 72 三、SPR檢測NBP2之分析 73 (一)、在標準Buffer PBS中比較Cys-chip與MHA-GQD-chip對於NBP2樣本之分析 73 (二)、MHA-GQD-chip對於摻雜人工唾液之NBP2樣本分析 74 第五章 結論與未來展望 76 壹、結論 76 貳、未來展望 77 第六章 參考文獻 78

    1. N.-F. Chiu, and T. Y. Huang, "Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors," Sensors and Actuators B: Chemical 197, 35-42 (2014).
    2. N.-F. Chiu, C. T. Kuo, T. L. Lin, C. C. Chang, and C. Y. Chen, "Ultra-high sensitivity of the non-immunological affinity of graphene oxide-peptide-based surface plasmon resonance biosensors to detect human chorionic gonadotropin," Biosensors and Bioelectronics 94, 351-357 (2017).
    3. N.-F. Chiu, S. Y. Fan, C. D. Yang, and T. Y. Huang, "Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection," Biosensors and Bioelectronics 89, 370-376 (2017).
    4. N.-F. Chiu, T. L. Lin, and C. T. Kuo, "Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma," Sensors and Actuators B: Chemical 265, 264-272 (2018).
    5. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, and R. Hu, "Strongly green-photoluminescent graphene quantum dots for bioimaging applications," Chemical communications 47, 6858-6860 (2011).
    6. D. Pan, J. Zhang, Z. Li, and M. Wu, "Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots," Advanced materials 22, 734-738 (2010).
    7. R. H. Juang, J. S. Guo, Y. J. Huang, and I. W. P. Chen, "Experimental and theoretical investigations of covalent functionalization of 1D/2D carbon-based buckypaper via aryl diazonium chemistry for high-performance energy storage," Carbon 205, 402-410 (2023).
    8. L. Lu, Y. Zhu, C. Shi, and Y. T. Pei, "Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation," Carbon 109, 373-383 (2016).
    9. J. Deng, Q. Lu, H. Li, Y. Zhang, and S. Yao, "Large scale preparation of graphene quantum dots from graphite oxide in pure water via one-step electrochemical tailoring," RSC Advances 5, 29704-29707 (2015).
    10. J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids," ACS nano 3, 2367-2375 (2009).
    11. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen, "Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid," Carbon 50, 4738-4743 (2012).
    12. M. Shehab, S. Ebrahim, and M. Soliman, "Graphene quantum dots prepared from glucose as optical sensor for glucose," Journal of Luminescence 184, 110-116 (2017).
    13. L. Tang, R. Ji, X. Li, K. S. Teng, and S. P. Lau, "Size‐dependent structural and optical characteristics of glucose‐derived graphene quantum dots," Particle & Particle Systems Characterization 30, 523-531 (2013).
    14. X. Yan, X. Cui, and L. S. Li, "Synthesis of large, stable colloidal graphene quantum dots with tunable size," Journal of the American Chemical Society 132, 5944-5945 (2010).
    15. M. He, J. Zhang, H. Wang, Y. Kong, Y. Xiao, and W. Xu, "Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction," Nanoscale Research Letters 13, 1-7 (2018).
    16. S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, "Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents," Chemical communications 48, 8835-8837 (2012).
    17. A. Tadesse, D. RamaDevi, M. Hagos, G. Battu, and K. Basavaiah, "Facile green synthesis of fluorescent carbon quantum dots from citrus lemon juice for live cell imaging," Asian J. Nanosci. Mater 1, 36-46 (2018).
    18. R. Atchudan, T. N. J. I. Edison, and Y. R. Lee, "Nitrogen-doped carbon dots originating from unripe peach for fluorescent bioimaging and electrocatalytic oxygen reduction reaction," Journal of Colloid and Interface Science 482, 8-18 (2016).
    19. B. S. B. Kasibabu, S. L. D’souza, S. Jha, and S. K. Kailasa, "Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice," Journal of fluorescence 25, 803-810 (2015).
    20. W. Chen, J. Shen, G. Lv, D. Li, Y. Hu, C. Zhou, X. Liu, and Z. Dai, "Green synthesis of graphene quantum dots from cotton cellulose," ChemistrySelect 4, 2898-2902 (2019).
    21. A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, and M. Sharon, "Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel," Materials Science and Engineering: C 33, 2914-2917 (2013).
    22. Z. L. Wu, P. Zhang, M. X. Gao, C. F. Liu, W. Wang, F. Leng, and C. Z. Huang, "One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins," Journal of Materials Chemistry B 1, 2868-2873 (2013).
    23. P. Kumar, C. Dhand, N. Dwivedi, S. Singh, R. Khan, S. Verma, A. Singh, M. K. Gupta, S. Kumar, and R. Kumar, "Graphene quantum dots: A contemporary perspective on scope, opportunities, and sustainability," Renewable and Sustainable Energy Reviews 157, 111993 (2022).
    24. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, "Focusing on luminescent graphene quantum dots: current status and future perspectives," Nanoscale 5, 4015-4039 (2013).
    25. P. Tian, L. Tang, K. Teng, and S. Lau, "Graphene quantum dots from chemistry to applications," Materials today chemistry 10, 221-258 (2018).
    26. A. Ghaffarkhah, E. Hosseini, M. Kamkar, A. A. Sehat, S. Dordanihaghighi, A. Allahbakhsh, C. van der Kuur, and M. Arjmand, "Synthesis, applications, and prospects of graphene quantum dots: A comprehensive review," Small 18, 2102683 (2022).
    27. J. Shen, Y. Zhu, C. Chen, X. Yang, and C. Li, "Facile preparation and upconversion luminescence of graphene quantum dots," Chemical communications 47, 2580-2582 (2011).
    28. F. Yang, M. Zhao, B. Zheng, D. Xiao, L. Wu, and Y. Guo, "Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis," Journal of Materials Chemistry 22, 25471-25479 (2012).
    29. R. Tian, S. Zhong, J. Wu, W. Jiang, Y. Shen, and T. Wang, "Solvothermal method to prepare graphene quantum dots by hydrogen peroxide," Optical Materials 60, 204-208 (2016).
    30. B. Liu, J. Xie, H. Ma, X. Zhang, Y. Pan, J. Lv, H. Ge, N. Ren, H. Su, and X. Xie, "From graphite to graphene oxide and graphene oxide quantum dots," Small 13, 1601001 (2017).
    31. S. Ahirwar, S. Mallick, and D. Bahadur, "Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots," ACS omega 2, 8343-8353 (2017).
    32. D. B. Shinde, and V. K. Pillai, "Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes," Chemistry-A European Journal 18, 12522-12528 (2012).
    33. M. Li, C. Yu, C. Hu, W. Yang, C. Zhao, S. Wang, M. Zhang, J. Zhao, X. Wang, and J. Qiu, "Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield," Chemical Engineering Journal 320, 570-575 (2017).
    34. S. Maiti, S. Kundu, C. N. Roy, T. K. Das, and A. Saha, "Synthesis of excitation independent highly luminescent graphene quantum dots through perchloric acid oxidation," Langmuir 33, 14634-14642 (2017).
    35. Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, Y. Park, and H. Lee, "Mass production of graphene quantum dots by one‐pot synthesis directly from graphite in high yield," Small 10, 866-870 (2014).
    36. A. B. Ganganboina, A. Dutta Chowdhury, and R. A. Doong, "N-doped graphene quantum dots-decorated V2O5 nanosheet for fluorescence turn off-on detection of cysteine," ACS applied materials & interfaces 10, 614-624 (2018).
    37. L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, and L. Sun, "Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties," Nature communications 5, 5357 (2014).
    38. X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, and J. X. Zhao, "Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing," Journal of Materials Chemistry C 1, 4676-4684 (2013).
    39. M. Yousaf, H. Huang, P. Li, C. Wang, and Y. Yang, "Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation," ACS chemical neuroscience 8, 1368-1377 (2017).
    40. Z. Huang, Y. Shen, Y. Li, W. Zheng, Y. Xue, C. Qin, B. Zhang, J. Hao, and W. Feng, "Facile synthesis of analogous graphene quantum dots with sp 2 hybridized carbon atom dominant structures and their photovoltaic application," Nanoscale 6, 13043-13052 (2014).
    41. X. Yan, X. Cui, B. Li, and L. S. Li, "Large, solution-processable graphene quantum dots as light absorbers for photovoltaics," Nano letters 10, 1869-1873 (2010).
    42. V. Sravya, V. Pavithra, T. D. Thangadurai, D. Nataraj, and N. S. Kumar, "Excitation-independent and fluorescence-reversible N-GQD for picomolar detection of inhibitory neurotransmitter in milk samples-an alleyway for possible neuromorphic computing application," Talanta 239, 123132 (2022).
    43. G. Wang, A. Xu, P. He, Q. Guo, Z. Liu, Z. Wang, J. Li, X. Hu, Z. Wang, and D. Chen, "Green preparation of lattice phosphorus doped graphene quantum dots with tunable emission wavelength for bio-imaging," Materials Letters 242, 156-159 (2019).
    44. J. Zhao, L. Tang, J. Xiang, R. Ji, Y. Hu, J. Yuan, J. Zhao, Y. Tai, and Y. Cai, "Fabrication and properties of a high-performance chlorine doped graphene quantum dot based photovoltaic detector," RSC Advances 5, 29222-29229 (2015).
    45. N. T. N. Anh, and R. A. Doong, "One-step synthesis of size-tunable gold@ sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-nitrophenol in aqueous solutions with complex matrix," ACS Applied Nano Materials 1, 2153-2163 (2018).
    46. N. T. N. Anh, P. Y. Chang, and R. A. Doong, "Sulfur-doped graphene quantum dot-based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater," RSC advances 9, 26588-26597 (2019).
    47. H. Wang, M. R. Revia, K. Wang, M. R. J. Kant, Q. Mu, Z. Gai, K. Hong, and M. Zhang, "Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging," Advanced Materials (Deerfield Beach, Fla.) 29 (2017).
    48. J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, and J. Liu, "Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst," The Journal of Physical Chemistry C 122, 349-358 (2018).
    49. P. Roy, R. Ravindranath, A. P. Periasamy, C. W. Lien, C. T. Liang, and H. T. Chang, "Green synthesis of Si-GQD nanocomposites as cost-effective catalysts for oxygen reduction reaction," RSC advances 6, 108941-108947 (2016).
    50. Q. Wu, J. Gao, L. Chen, S. Dong, H. Li, H. Qiu, and L. Zhao, "Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance," Journal of Chromatography A 1600, 209-218 (2019).
    51. F. Qian, X. Li, L. Tang, S. K. Lai, C. Lu, and S. P. Lau, "Potassium doping: Tuning the optical properties of graphene quantum dots," AIP Advances 6 (2016).
    52. B. Li, X. Xiao, M. Hu, Y. Wang, Y. Wang, X. Yan, Z. Huang, P. Servati, L. Huang, and J. Tang, "Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging," Arabian Journal of Chemistry 15, 103856 (2022).
    53. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, and L. Qu, "A versatile, ultralight, nitrogen‐doped graphene framework," Angewandte Chemie International Edition 51, 11371-11375 (2012).
    54. J. Gu, X. Zhang, A. Pang, and J. Yang, "Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots," Nanotechnology 27, 165704 (2016).
    55. L. Lin, M. Rong, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang, and X. Chen, "A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2, 4, 6-trinitrophenol in aqueous solution," Nanoscale 7, 1872-1878 (2015).
    56. S. Gao, L. Tang, J. Xiang, R. Ji, S. K. Lai, S. Yuan, and S. P. Lau, "Facile preparation of sulphur-doped graphene quantum dots for ultra-high performance ultraviolet photodetectors," New Journal of Chemistry 41, 10447-10451 (2017).
    57. Q. Li, S. Zhang, L. Dai, and L. S. Li, "Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction," Journal of the American Chemical Society 134, 18932-18935 (2012).
    58. S. Kundu, B. Malik, D. K. Pattanayak, P. Ragupathy, and V. K. Pillai, "Role of Specific N‐Containing Active Sites in Interconnected Graphene Quantum Dots for the Enhanced Electrocatalytic Activity towards Oxygen Evolution Reaction," ChemistrySelect 2, 9943-9946 (2017).
    59. S. R. M. Santiago, Y. A. Wong, T. N. Lin, C. H. Chang, C. T. Yuan, and J. L. Shen, "Effect of nitrogen doping on the photoluminescence intensity of graphene quantum dots," Optics letters 42, 3642-3645 (2017).
    60. N. Anh, M. Hye, T. Ngoc, S. Bang, S. Yoon, and M. Jeong, "Highly enhanced photoresponsivity of a monolayer WSe2 photodetector with nitrogen-doped graphene quantum dots, ACS Appl. Mater," Interfaces 10, 10322 (2018).
    61. X. Xu, F. Gao, X. Bai, F. Liu, W. Kong, and M. Li, "Tuning the photoluminescence of graphene quantum dots by photochemical doping with nitrogen," Materials 10, 1328 (2017).
    62. H. Safardoust Hojaghan, M. Salavati Niasari, O. Amiri, and M. Hassanpour, "Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli," Journal of Molecular Liquids 241, 1114-1119 (2017).
    63. Y. Yang, X. Xiao, X. Xing, Z. Wang, T. Zou, Z. Wang, R. Zhao, and Y. Wang, "One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions," Materials Research Express 6, 095615 (2019).
    64. L. Ruiyi, P. Tinling, C. Hongxia, S. Jinsong, and L. Zaijun, "Electrochemical detection of cancer cells in human blood using folic acid and glutamic acid-functionalized graphene quantum dot-palladium@ gold as redox probe with excellent electrocatalytic activity and target recognition," Sensors and Actuators B: Chemical 309, 127709 (2020).
    65. S. Gu, C. T. Hsieh, C. Y. Yuan, Y. A. Gandomi, J. K. Chang, C. C. Fu, J. W. Yang, and R. S. Juang, "Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea," Journal of Luminescence 217, 116774 (2020).
    66. Y. Zhu, L. Yan, M. Xu, Y. Li, X. Song, and L. Yin, "Difference between ammonia and urea on nitrogen doping of graphene quantum dots," Colloids and Surfaces A: Physicochemical and Engineering Aspects 610, 125703 (2021).
    67. V. Sravya, V. R. Pavithra, T. D. Thangadurai, D. Nataraj, and N. S. Kumar, "Excitation-independent and fluorescence-reversible N-GQD for picomolar detection of inhibitory neurotransmitter in milk samples-an alleyway for possible neuromorphic computing application," Talanta 239, 123132 (2022).
    68. H. Tsai, H. C. Hu, C. C. Hsieh, Y. H. Lu, C. H. Chen, and C. B. Fuh, "Fluorescence studies of the interaction between chloramphenicol and nitrogen‐doped graphene quantum dots and determination of chloramphenicol in chicken feed," Journal of the Chinese Chemical Society 67, 152-159 (2020).
    69. R. S. Juang, C. T. Hsieh, C. P. Kao, Y. A. Gandomi, C. C. Fu, S. H. Liu, and S. Gu, "Highly fluorescent green and red emissions from boron-doped graphene quantum dots under blue light illumination," Carbon 176, 61-70 (2021).
    70. X. Hai, Q. X. Mao, W. J. Wang, X. F. Wang, X. W. Chen, and J. H. Wang, "An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging," Journal of Materials Chemistry B 3, 9109-9114 (2015).
    71. N. Sohal, B. Maity, and S. Basu, "Recent advances in heteroatom-doped graphene quantum dots for sensing applications," RSC advances 11, 25586-25615 (2021).
    72. B. Li, Y. Wang, L. Huang, H. Qu, Z. Han, Y. Wang, M. J. Kipper, L. A. Belfiore, and J. Tang, "Review of performance improvement strategies for doped graphene quantum dots for fluorescence-based sensing," Synthetic Metals 276, 116758 (2021).
    73. S. Bian, C. Shen, H. Hua, L. Zhou, H. Zhu, F. Xi, J. Liu, and X. Dong, "One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead (II)," Rsc Advances 6, 69977-69983 (2016).
    74. H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P. M. Ajayan, "Synthesis of S-doped graphene by liquid precursor," Nanotechnology 23, 275605 (2012).
    75. S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, and X. Li, "Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+," Analytical chemistry 86, 10201-10207 (2014).
    76. W. Wang, S. Xu, N. Li, Z. Huang, B. Su, and X. Chen, "Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 221, 117211 (2019).
    77. N. T. N. Anh, A. D. Chowdhury, and R. A. Doong, "Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater," Sensors and Actuators B: Chemical 252, 1169-1178 (2017).
    78. A. M. Mahmoud, M. M. El Wekil, M. H. Mahnashi, M. F. Ali, and S. A. Alkahtani, "Modification of N, S co-doped graphene quantum dots with p-aminothiophenol-functionalized gold nanoparticles for molecular imprint-based voltammetric determination of the antiviral drug sofosbuvir," Microchimica Acta 186, 1-8 (2019).
    79. Q. Guo, J. Feng, D. Chen, N. Song, H. Dong, L. Yu, and L. Dong, "Theoretical insights into enhanced electrocatalytic activity of oxygen reduction reactions on N/S-codoped graphene quantum dots," The Journal of Physical Chemistry C 125, 9747-9755 (2021).
    80. Y. X. Wang, M. Rinawati, W. H. Huang, Y. S. Cheng, P. H. Lin, K. J. Chen, L. Y. Chang, K. C. Ho, W. N. Su, and M. H. Yeh, "Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor," Carbon 186, 406-415 (2022).
    81. H. Wang, Q. Mu, K. Wang, R. A. Revia, C. Yen, X. Gu, B. Tian, J. Liu, and M. Zhang, "Nitrogen and boron dual-doped graphene quantum dots for near-infrared second window imaging and photothermal therapy," Applied materials today 14, 108-117 (2019).
    82. P. Yang, J. Su, R. Guo, F. Yao, and C. Yuan, "B, N-Co-doped graphene quantum dots as fluorescence sensor for detection of Hg2+ and F− ions," Analytical Methods 11, 1879-1883 (2019).
    83. S. Kundu, R. M. Yadav, T. Narayanan, M. V. Shelke, R. Vajtai, P. M. Ajayan, and V. K. Pillai, "Synthesis of N, F and S co-doped graphene quantum dots," Nanoscale 7, 11515-11519 (2015).
    84. Y. Xu, S. Wang, X. Hou, Z. Sun, Y. Jiang, Z. Dong, Q. Tao, J. Man, and Y. Cao, "Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: A promising ion fluorescent probe," Applied Surface Science 445, 519-526 (2018).
    85. Y. Park, J. Yoo, B. Lim, W. Kwon, and S. W. Rhee, "Improving the functionality of carbon nanodots: doping and surface functionalization," Journal of Materials Chemistry A 4, 11582-11603 (2016).
    86. D. Ghosh, K. Sarkar, P. Devi, K. H. Kim, and P. Kumar, "Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices," Renewable and Sustainable Energy Reviews 135, 110391 (2021).
    87. H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, and S. T. Lee, "Water‐soluble fluorescent carbon quantum dots and photocatalyst design," Angewandte Chemie International Edition 49, 4430-4434 (2010).
    88. Z. L. Wu, M. X. Gao, T. T. Wang, X. Y. Wan, L. L. Zheng, and C. Z. Huang, "A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots," Nanoscale 6, 3868-3874 (2014).
    89. H. Ehtesabi, Z. Hallaji, S. Najafi Nobar, and Z. Bagheri, "Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications," Microchimica Acta 187, 150 (2020).
    90. M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, and P. Chen, "Revealing the tunable photoluminescence properties of graphene quantum dots," Journal of Materials Chemistry C 2, 6954-6960 (2014).
    91. J. Li, X. Zhang, J. Jiang, Y. Wang, H. Jiang, J. Zhang, X. Nie, and B. Liu, "Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo," Toxicological Sciences 167, 269-281 (2019).
    92. S. Wang, I. S. Cole, and Q. Li, "The toxicity of graphene quantum dots," RSC Advances 6, 89867-89878 (2016).
    93. Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei, and G. Shi, "Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties," Physical Chemistry Chemical Physics 15, 9907-9913 (2013).
    94. M. Nurunnabi, Z. Khatun, K. M. Huh, S. Y. Park, D. Y. Lee, K. J. Cho, and Y. K. Lee, "In vivo biodistribution and toxicology of carboxylated graphene quantum dots," ACS nano 7, 6858-6867 (2013).
    95. X. Yuan, Z. Liu, Z. Guo, Y. Ji, M. Jin, and X. Wang, "Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups," Nanoscale research letters 9, 1-9 (2014).
    96. D. Wang, L. Wang, X. Dong, Z. Shi, and J. Jin, "Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection," Carbon 50, 2147-2154 (2012).
    97. J. J. Liu, X. L. Zhang, Z. X. Cong, Z. T. Chen, H. H. Yang, and G. N. Chen, "Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites," Nanoscale 5, 1810-1815 (2013).
    98. H. Zhao, Y. Chang, M. Liu, S. Gao, H. Yu, and X. Quan, "A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots," Chemical Communications 49, 234-236 (2013).
    99. A. Kalkal, R. Pradhan, S. Kadian, G. Manik, and G. Packirisamy, "Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer," ACS Applied Bio Materials 3, 4922-4932 (2020).
    100. S. K. Tuteja, R. Chen, M. Kukkar, C. K. Song, R. Mutreja, S. Singh, A. K. Paul, H. Lee, K. H. Kim, and A. Deep, "A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs)," Biosensors and Bioelectronics 86, 548-556 (2016).
    101. M. Azimzadeh, M. Rahaie, N. Nasirizadeh, K. Ashtari, and H. Naderi-Manesh, "An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer," Biosensors and Bioelectronics 77, 99-106 (2016).
    102. L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang, and J. J. Zhu, "A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots," Advanced Functional Materials 22, 2971-2979 (2012).
    103. H. Sun, L. Wu, W. Wei, and X. Qu, "Recent advances in graphene quantum dots for sensing," Materials today 16, 433-442 (2013).
    104. P. Zhang, Y. Zhuo, Y. Chang, R. Yuan, and Y. Chai, "Electrochemiluminescent graphene quantum dots as a sensing platform: a dual amplification for microRNA assay," Analytical chemistry 87, 10385-10391 (2015).
    105. R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
    106. R. H. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, "Surface-plasmon resonance effect in grating diffraction," Physical review letters 21, 1530 (1968).
    107. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
    108. E. Kretschmann, and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Zeitschrift für Naturforschung A 23, 2135-2136 (1968).
    109. B. Liedberg, C. Nylander, and I. Lunström, "Surface plasmon resonance for gas detection and biosensing," Sensors and actuators 4, 299-304 (1983).
    110. L. Wang, "Screening and biosensor-based approaches for lung cancer detection," Sensors 17, 2420 (2017).
    111. J. F. Rusling, C. V. Kumar, J. S. Gutkind, and V. Patel, "Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer," Analyst 135, 2496-2511 (2010).
    112. W. Liu, A. Zhang, G. Xu, F. Wei, J. Yang, and Q. Hu, "Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73," Journal of Pharmaceutical and Biomedical Analysis 117, 18-25 (2016).
    113. A. Gao, X. Yang, J. Tong, L. Zhou, Y. Wang, J. Zhao, H. Mao, and T. Li, "Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays," Biosensors and Bioelectronics 91, 482-488 (2017).
    114. T. Shibayama, H. Ueoka, K. Nishii, K. Kiura, M. Tabata, K. Miyatake, T. Kitajima, and M. Harada, "Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of small-cell lung cancer (SCLC)," Lung cancer 32, 61-69 (2001).
    115. J. Grenier, J. Pujol, F. Guilleux, J. Daures, H. Pujol, and F. Michel, "Cyfra 21-1, a new marker of lung cancer," Nuclear medicine and biology 21, 471-476 (1994).
    116. M. Grunnet, and J. Sorensen, "Carcinoembryonic antigen (CEA) as tumor marker in lung cancer," Lung cancer 76, 138-143 (2012).
    117. J. J. Body, J. P. Sculier, N. Raymakers, M. Paesmans, P. Ravez, P. Libert, M. Richez, G. Dabouis, H. Lacroix, and G. Bureau, "Evaluation of squamous cell carcinoma antigen as a new marker for lung cancer," Cancer 65, 1552-1556 (1990).
    118. Y. Kimura, T. Fujii, K. Hamamoto, N. Miyagawa, M. Kataoka, and A. Iio, "Serum CA125 level is a good prognostic indicator in lung cancer," British journal of cancer 62, 676-678 (1990).
    119. G. Buccheri, and D. Ferrigno, "Usefulness of tissue polypeptide antigen in staging, monitoring, and prognosis of lung cancer," Chest 93, 565-570 (1988).
    120. N. Nhung, P. Mirejovský, T. Mirejovský, and L. Melinova, "Cytokeratins and lung carcinomas," Ceskoslovenska patologie 35, 80-84 (1999).
    121. L. Pang, J. Wang, Y. Jiang, and L. Chen, "Decreased levels of serum cytokeratin 19 fragment CYFRA 21‑1 predict objective response to chemotherapy in patients with non-small cell lung cancer," Experimental and therapeutic medicine 6, 355-360 (2013).
    122. W. C. S. Cho, "Potentially useful biomarkers for the diagnosis, treatment and prognosis of lung cancer," Biomedicine & pharmacotherapy 61, 515-519 (2007).
    123. S. K. Sharma, S. Bhat, V. Chandel, M. Sharma, P. Sharma, S. Gupta, S. Sharma, and A. A. Bhat, "Diagnostic utility of serum and pleural fluid carcinoembryonic antigen, and cytokeratin 19 fragments in patients with effusion from nonsmall cell lung cancer," Journal of carcinogenesis 14 (2015).
    124. T. Zhao, G. Mao, and M. Chen, "The role of change rates of CYFRA21-1 and CEA in predicting chemotherapy efficacy for non-small-cell lung cancer," Computational and Mathematical Methods in Medicine 2021 (2021).
    125. D. Ferrigno, G. Buccheri, and C. Giordano, "Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC)," Lung Cancer 41, 311-320 (2003).
    126. L. Liu, J. Teng, L. Zhang, P. Cong, Y. Yao, G. Sun, Z. Liu, T. Yu, and M. Liu, "The combination of the tumor markers suggests the histological diagnosis of lung cancer," BioMed research international 2017 (2017).
    127. L. Fu, R. Wang, L. Yin, X. Shang, R. Zhang, and P. Zhang, "CYFRA21-1 tests in the diagnosis of non-small cell lung cancer: a meta-analysis," The International journal of biological markers 34, 251-261 (2019).
    128. J. E. Dover, G. M. Hwang, E. H. Mullen, B. C. Prorok, and S. J. Suh, "Recent advances in peptide probe-based biosensors for detection of infectious agents," Journal of microbiological methods 78, 10-19 (2009).
    129. Q. Liu, J. Wang, and B. J. Boyd, "Peptide-based biosensors," Talanta 136, 114-127 (2015).
    130. A. Karimzadeh, M. Hasanzadeh, N. Shadjou, and M. de la Guardia, "Peptide based biosensors," TrAC Trends in Analytical Chemistry 107, 1-20 (2018).
    131. N. D. Luong, L. H. Sinh, L. S. Johansson, J. Campell, and J. Seppälä, "Functional Graphene by Thiol‐ene Click Chemistry," Chemistry-A European Journal 21, 3183-3186 (2015).
    132. I. Childres, L. A. Jauregui, W. Park, H. Cao, and Y. P. Chen, "Raman spectroscopy of graphene and related materials," New developments in photon and materials research 1, 1-20 (2013).
    133. K. Wang, J. Dong, L. Sun, H. Chen, Y. Wang, C. Wang, and L. Dong, "Effects of elemental doping on the photoluminescence properties of graphene quantum dots," RSC advances 6, 91225-91232 (2016).
    134. P. N. Thang, L. X. Hung, D. N. Thuan, N. H. Yen, N. T. T. Hien, V. T. H. Hanh, N. C. Khang, J. Laverdant, and P. T. Nga, "Temperature-dependent Raman investigation and photoluminescence of graphene quantum dots with and without nitrogen-doping," Journal of Materials Science 56, 4979-4990 (2021).
    135. J. P. Naik, P. Sutradhar, and M. Saha, "Molecular scale rapid synthesis of graphene quantum dots (GQDs)," Journal of Nanostructure in Chemistry 7, 85-89 (2017).
    136. M. Roushani, M. Mavaei, and H. R. Rajabi, "Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye," Journal of Molecular Catalysis A: Chemical 409, 102-109 (2015).
    137. N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. Rodríguez-Castellón, and T. J. Bandosz, "S-and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity," Carbon 135, 104-111 (2018).
    138. S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, and X. Dong, "Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection," Sensors and Actuators B: Chemical 242, 231-237 (2017).
    139. S. Kadian, and G. Manik, "Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin," Food chemistry 317, 126457 (2020).
    140. C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, Z. Kang, N. Yuan, and J. Ding, "A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products," Journal of Materials Chemistry B 3, 6871-6876 (2015).
    141. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, and M. Han, "Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells," Journal of materials chemistry 22, 7461-7467 (2012).
    142. A. K. Sharma, R. Jha, and B. Gupta, "Fiber-optic sensors based on surface plasmon resonance: a comprehensive review," IEEE Sensors journal 7, 1118-1129 (2007).
    143. R. Kashyap, U. R. Baruah, A. Gogoi, and B. Mondal, "Sensitivity-Enhanced Surface Plasmon Resonance Sensor Based on Zinc Oxide and BlueP-MoS2 Heterostructure," Plasmonics, 1-15 (2023).
    144. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, "Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film," Optics express 26, 34880-34893 (2018).
    145. A. S. Kushwaha, A. Kumar, R. Kumar, and S. Srivastava, "A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity," Photonics and Nanostructures-Fundamentals and Applications 31, 99-106 (2018).
    146.Chiu, Nan-Fu, Ying-Hao Wang, and Chen-Yu Chen. "Clinical application for screening Down’s Syndrome by using carboxylated graphene oxide-based surface plasmon resonance aptasensors." International Journal of Nanomedicine (2020): 8131-8149.
    147. H. Huang, P. Li, M. Zhang, Y. Yu, Y. Huang, H. Gu, C. Wang, and Y. Yang, "Graphene quantum dots for detecting monomeric amyloid peptides," Nanoscale 9, 5044-5048 (2017).
    148. M. Wang, Y. Sun, X. Cao, G. Peng, I. Javed, A. Kakinen, T. P. Davis, S. Lin, J. Liu, and F. Ding, "Graphene quantum dots against human IAPP aggregation and toxicity in vivo," Nanoscale 10, 19995-20006 (2018).

    無法下載圖示 本全文未授權公開
    QR CODE