簡易檢索 / 詳目顯示

研究生: 梁順華
Shuen-Hua Liang
論文名稱: 在 LC-metric spaces 下的平衡問題
Equilibrium Problems In LC-metric spaces
指導教授: 朱亮儒
Chu, Liang-Ju
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 26
中文關鍵詞: 平衡問題對偶平衡問題HKKM 多值函數C 空間LC 賦距空間C 集合轉換閉值C 擬凸性C 性質弱單調性強制條件
英文關鍵詞: equilibrium problem, dual equilibrium problem, HKKM mapping, C-space, LC-metric space, C-set, transfer closed valued, C-quasiconvexity, C-property, generalized monotonicity, coercive condition
論文種類: 學術論文
相關次數: 點閱:134下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文裡,我們在特別的賦距空間 LC-metric spaces 中考慮平衡問題 EP(f,K) 解的存在性。首先,我們透過一個 HKKM 多值函數在抽象的拓樸空間 C-spaces 中建立一些交集非空定理。在定義域為一個 compact 下,我們證明了 EP(f,K) 解的存在性。如果把 compact 的條件拿掉的話,透過 coercive condition,可以改善我們的主要定理,也會得到 EP(f,K) 解的存在性。另外, 若應用 C-property 和 g-monotonicity 的觀念,分別取代 HKKM 多值函數和函數 f 的連續性,則我們可以得到其它的存在定理。最後,在對偶問題 DEP(f,K) 的基礎下,我們找了一些條件可以確保 DEP(f,K) 的解就是 EP(f,K) 的解。此外,在函數 f 本身具有 pseudomonotonicity 或 quasimonotonicity 之特性下,我們進一步比較了兩個 coercive conditions C_s 和 C_w 並探討其分別對 EP(f,K) 解集合的影響性。

    In this paper, we consider the existence theorem of solutions for the well-known equilibrium problem EP(f,K) in LC-metric spaces. First, we establish an intersection theorem on C-spaces via a generalized HKKM mapping. Then we prove our main existence result for EP(f,K), where the constraint region K is compact. Without compactness, we also improve our main theorem under an usual coercive condition. As well, we can substitute HKKM mapping and continuity of f by the concept of C-property and g-monotonicity, respectively. Finally, based on the dual equilibrium problem DEP(f,K), we try to find a link to make sure of the existence of solutions to EP(f,K). In addition, when the bifunction f is equipped with pseudomonotonicity or quasimonotonicity, we further compare a kind of coercive condition C_s and a weaker condition C_w to see the influence on the solution set of EP(f,K).

    Abstract 1 Sec. 1. Introduction and Preliminaries 2 Sec. 2. Main Theorem with Compact Regions 6 Sec. 3. Main Theorem with a Coercive Condition 10 Sec. 4. Some Coercive Conditions 13 References 24

    Q. H. Ansari, Y. C. Lin and J. C. Yao (2000).General KKM theorem with applications to minimax and variational inequalities, J. Optim. Theory Appl. 104, 41-57.
    J. B. Baillon (1988).Nonexpansive mapping and hyperconvex spaces, in: R. F. Brown(Ed.), Fixed Point Theory and Its Applications,Contemp. Maths. Amer. Math. Soc. 72, 11-19.
    C. Baiocchi and A. Capelo (1984).Variational and quasivariational inequalities: applications to free boundary problems, John Wiley and Sons, New York.
    H. Ben-El-Mechaiekh and M. Oudadess (1995).Some selection theorems without convexity, J. Math. Anal. Appl. 195, 614-618.
    M. Bianchi, N. Hadjisavvas and S. Schaible (1997).Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92(3), 527-542.
    M. Bianchi and R. Pini (2001).A note on equilibrium problems for properly quasimonotone bifunctions, Journal of Global Optimization 20, 67-76.
    M. Bianchi and R. Pini (2005).Coercivity conditions for equilibrium problems, J. Optim. Theory Appl. 124, 79-92.
    M. Bianchi and S. Schaible (1996).Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90(1), 31-43.
    E. Blum and W. Oettli (1994).From optimization and variational inequalities to equilibrium problems, The Mathematics Student 63, 123-145.
    M. S. R. Chowdhury and K. K. Tan (1996).Generalization of Ky Fan's minimax inequality with applications to generalized variational inequalities for pseudomonotone operators and fixed point theorem, J. Math. Anal. Appl. 204, 910-929.
    Jean-Pierre Crouzeix (1997).Pseudomonotone variational inequality problems: Existence of solutions, Mathematical Programming 78(3), 305-314.
    A. Daniilidis and N. Hadjisavvas (2000).On generalized cyclically monotone operators and proper quasimonotonicity, Optimization 47, 123-135.
    X. P. Ding and E. Tarafdar (2000).Generalized variational-like inequalities with pseudomonotone set-valued mappings, Arch. der Math. 74, 302-313.
    M. Fakhar and J. Zafarani (2004).Generalized equilibrium problems for quasimonotone and pseudomonotone bifunctions, J. Optim. Theory Appl. 123(2), 349-364.
    M. Fakhar and J. Zafarani (2005).Equilibrium problems in the quasimonotone case, J. Optim. Theory Appl. 126(1), 125-136.
    K. Fan (1961).A generalization of Tychonoff's fixed point theorem, Math. Ann. 142, 305-310.
    K. Fan (1972).A minimax inequality and applications, Inequalities III, O.Shisha (editor), Academic Press, New York, 103-113.
    C. Horvath (1987).Some results on multivalued mappings and inequalities without convexity, in "Nonlinear Analysis and Convex Analysis" (Eds by B. L. Lin and S. Simons), Marcel Dekker, New York, 99-106.
    C. Horvath (1991).Contractibility and generalized convexity, J. Math. Anal. Appl. 156, 341-357.
    C. Horvath (1993).Extension and selection theorems in topological spaces with a generalized convex structure, Annales de la Faculte des Sciences de Toulouse 2, 253-269.
    S. Karamardian (1976).Complementarity problems over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl. 18(4), 445-454.
    I. V. Konnov (2009).Regularization method for nonmonotone equilibrium problems,Journal of Nonlinear Convex Analysis 10(1), 93-101.
    I. V. Konnov and S. Schaible (2000).Duality for equilibrium problems under generalized monotonicity, J. Optim. Theory Appl. 104(2), 395-408.
    S. Park (2002).Remarks on equilibria for g-monotone maps on generalized convex spaces, J. Optim. Theory Appl. 269(1), 244-255.
    W. Oettli (1997).A remark on vector-valued equilibria and generalized monotonicity, ACTA mathematica Vietnamica 22, 213-221.
    K. K. Tan and Z. Z. Yuan (1993).A minimax inequality with applications to existence of equilibrium points, Bull. Austral. Math. Soc. 47, 483-503.
    G. Tian (1991).Generalizations of the FKKM theorem and Ky Fan minimax inequality with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170, 457-471.
    Y. Xu and J. Mao (2000).A Topological intersection theorem with applications in H-spaces, Southeast Asian Bulletin of Mathematics 24, 331-339.
    J. Zafarani (2004).KKM property in topological spaces, Bulletin de la Societe Royale des Sciences de Liege 73(2-3), 171-185.
    J. X. Zhou and G. Chen (1998).Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl. 132, 213-225.

    下載圖示
    QR CODE