研究生: |
魏義家 Wei, Yi-Jia |
---|---|
論文名稱: |
汽車空調系統換裝環保冷媒與運轉性能最佳化評估之研究 A Study on the Replacement of Automotive Air Conditioning Systems with Environmentally Friendly Refrigerants and Performance Optimization Evaluation |
指導教授: |
鄧敦平
Teng, Tun-Ping |
口試委員: |
鄧敦平
Teng, Tun-Ping 莫懷恩 Mo, Huai-En 陳韋任 Chen, Wei-Jen |
口試日期: | 2024/05/30 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | R-152a 、R-1234yf 、R-134a 、汽車空調系統 、TEWI |
英文關鍵詞: | R-152a, R-1234yf, R-134a, mobile air conditioning system(MACS), Total Equivalent Warming Impact (TEWI) |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400783 |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選擇兩種低全球暖化潛勢(GWP)冷媒(R-152a、R-1234yf)作為R-134a汽車空調系統(MACS)的直接替代品,以R-134a原機充填量75%的 R-152a與110%的 R-1234yf 直接進行冷媒換裝。實驗時的環境溫度與壓縮機轉速均參考中華民國國家標準汽車空調檢驗法CNS 7897 - D3079所訂定之規範,並增設40 ℃與30 ℃的高、低溫室外條件,針對三種冷媒的系統性能指標進行分析與評估。研究結果顯示,在所有測試條件下,MACS使用 R-152a 時的能源效率比(EER)與性能係數(COP)相較於原機皆有顯著提升,且消耗電功率(W ̇_total)與壓縮比(CR)大幅降低。在環境溫度35 ℃且壓縮機轉速1800 rpm進行性能測試時,R-152a與R-1234yf的W ̇_total分別比原機低5.96%與5.04%,且EER分別比原機高11.26%與1.45%。此外,R-152a與R-1234yf的COP與原機的差異百分比分別為15.05%與-14.95%。換裝R-1234yf導致冷氣能力與COP下降的主要是因為相變熱與熱傳係數(thermal conductivity, k)較低所致。再者,R-152a在每日行駛里程超過4.9 hr以上時,其總當量暖化影響(TEWI)即可優於R-1234yf,顯示R-152a應用在長時間行駛的MACS更能達到節能與環保兼具的需求。
This study selects two low Global Warming Potential (GWP) refrigerants (R-152a, R-1234yf) as direct substitutes for R-134a mobile air conditioning systems (MACS), with R-152a filled at 75% and R-1234yf at 110% of the original R-134a charge. The experimental conditions, including ambient temperature and compressor speed, follow the specifications set forth by the national standard of the Republic of China for automotive air conditioning inspection, CNS 7897 - D3079, with additional conditions set at 40 °C and 30 °C for high and low outdoor temperatures, respectively. System performance indicators for the three refrigerants are analyzed and evaluated. The results show that under all test conditions, the energy efficiency ratio (EER) and coefficient of performance (COP) of mobile air conditioning systems using R-152a exhibit significant improvements compared to the original system, with reduced total power consumption (W ̇_total) and compression ratio (CR). During performance testing at an ambient temperature of 35 °C and compressor speed of 1800 rpm, W ̇_total for R-152a and R-1234yf is respectively 5.96% and 5.04% lower than the original system, with EER respectively 11.26% and 1.45% higher. Additionally, the percentage differences in COP between R-152a and R-1234yf compared to the original system are 15.05% and -14.95%, respectively. The decrease in cooling capacity and COP when switching to R-1234yf is primarily attributed to its lower latent heat and thermal conductivity (k).Furthermore, when the daily driving mileage exceeds 4.9 hours, the Total Equivalent Warming Impact (TEWI) of R-152a is superior to that of R-1234yf, indicating that R-152a is more energy-efficient and environmentally friendly for mobile air conditioning systems requiring long-term driving.
許守平,冷凍空調原理與工程,全華圖書股份有限公司,2007。
X. Chen, K. Liang, Z. Li, H. Jiang, and J. Xu, “Energy and exergy analysis of domestic refrigerators using R152a to replace R134a,” Thermal Science and Engineering Progress, vol. 29, 101235, 2022.
ASHRAE Inc., Chapter 29 Refrigerants in 2017 ASHRAE Handbook- Fundamentals (SI), ASHRAE Inc., 2017.
徐麗瀅、楊斐喬,“國際間氫氟碳化物(HFCs)管制與其替代品發展趨勢”,財團法人工業技術研究院綠能所,2022。
European Commission. Regulation (EU) No 517/2014 of the European parliament and of the Council of 16 pril 2014 on fluorinated greenhouse gases and repealing regulation (EC) No 842/2006. 2014, Retrieved from https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=celex%3A32014R0517
UNEP, Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer, Kigali, Rwanda, 2016.
Final Rule - Phasedown of Hydrofluorocarbons: Establishing the Allowance Allocation and Trading Program under the AIM Act, Retrieved from https://www.epa.gov/climate-hfcs-reduction/final-rule-phasedown-hydrofluorocarbons-establishing-allowance-allocation
D. Wu, B. Hu, and R. Z. Wang, “Vapor compression heat pumps with pure Low-GWP refrigerants,” Renewable and Sustainable Energy Reviews, vol. 138, 110571, 2021.
S. Yadav, J. Liu, and S. C. Kim, “A comprehensive study on 21st-century refrigerants-R290 and R1234yf: A review,” International Journal of Heat and Mass Transfer, vol. 182, 121947, 2022.
C. Arpagaus, F. Bless, M. Uhlmann, J. Schiffmann, and S. S. Bertsch, “High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials,”Energy, vol. 152, pp. 985-1010, 2018.
M. O. McLinden, A. F. Kazakov, J. S. Brown, and P. A. Domanski, “A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants,” International Journal of Refrigeration, vol. 38, pp. 80-92, 2014.
A. Kazakov, M. O. McLinden, and M. Frenkel, “Computational design of new refrigerant fluids based on environmental, safety, and thermodynamic characteristics,” Industrial & engineering chemistry research, vol. 51(38), pp. 12537-12548, 2012.
交通部,機動車輛登記數,2024年6月。取自: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
M. Z. Sharif, W. H. Azmi, M. F. Ghazali, M. Samykano, and H. M. Ali, “Performance improvement strategies of R1234yf in vapor compression refrigeration system as a R134a replacement: A review,” Journal of the Taiwan Institute of Chemical Engineers, 105032, 2023.
H. K. Hsieh and T. P. Teng, “Retrofit assessment of automobile air conditioners using hydrocarbon refrigerants,” Applied Thermal Engineering, vol. 214, 118781, 2022.
魏義家、鄧敦平、劉彥興,“R-152a應用於汽車空調系統性能評估之研究”,中國機械工程學會第四十屆全國學術研討會論文集,國立彰化師範大學、台灣,2023年12月, pp. 292-297。
R. Fenouche and A. Ouadha, “Flow and heat transfer features during propane (R290) and isobutane (R600a) boiling in a tube,” International Journal of Thermofluids, vol.20, 100428, 2023.
A. Jones, A. Wolf, and S. M. Kwark, “Refrigeration system development with limited charge of flammable Refrigerant, R-290,” Thermal Science and Engineering Progress, vol. 34, 101392, 2022.
Linde, Refrigerants Environmental Data, Ozone Depletion and Global Warming Potential, Retrieved from https://www.linde-gas.com/en/images/Refrigerants%20environmental%20GWPs_74671_tcm17-111483.pdf.
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Designation and Safety Classification of Refrigerants ASHRAE Standard, 34, 2019.
International Electrotechnical Commission, IEC 61010-2 Safety requirements for electrical equipment for measurement, control, and laboratory use, 2019.
International Air Transport Association, “Dangerous goods regulations,” Dangerous goods regulations International Air Transport Association (IATA), 1986.
C. C. Yu and T.P. Teng, “ Retrofit assessment of refrigerator using hydrocarbon refrigerants,” Applied thermal engineering, vol. 66, no. 1-2, pp. 507-518, 2014.
E. Hihara, “Risk Assessment of Mildly Flammable Refrigerants-Final Report 2016,” The Japan Society of Refrigerating and Air Conditioning Engineers, JSRAE, Tokyo, Japan, 2016.
R. Ciconkov, “Refrigerants: There is still no vision for sustainable Solutions,” International Journal of Refrigeration, vol. 86, pp. 441-448, 2018.
Z. Li, K. Liang, and H. Jiang, “Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system,” Applied Thermal Engineering, vol. 153, pp. 646-654, 2019.
R. Zhai, S. Tan, Y. Zhuang, B. Ye, and Y. Shi, “High-temperature Oxidation and a Comprehensive Kinetic Mechanism of HFO-1234yf,” International Journal of Refrigeration, 2023.
R. Cabello, D. Sánchez, R. Llopis, J. Catalán, L. Nebot-Andrés, and E. Torrella, “Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants,” Applied Thermal Engineering, vol. 110, pp. 972-984, 2017.
H. Li and K. Tang, “A comprehensive study of drop-in alternative mixtures for R134a in a mobile air-conditioning system,” Applied Thermal Engineering, vol. 203, 117914, 2022.
NIST, NIST Reference Fluid Thermodynamic and Transport Properties Database: version 10.0 (REFPROP 10.0), 2018.
經濟部標準檢驗局,CNS 7897 - D3079汽車用冷氣機檢驗法,1981。
K. Nawaz, B., Shen, A. Elatar, V. Baxter, and O. Abdelaziz, “R290 (propane) and R600a (isobutene) as natural refrigerants for residential heat pump water heaters,” Applied Thermal Engineering, vol. 127, pp. 870-883, 2017.
D. R. Reddy, P. Bhramara, and K. Govindarajulu,“Experimental evaluation of the effect of refrigerant charge and capillary tube length on the performance of household refrigerator with different configurations of R290 and R600a,”Materials Today: Proceedings, vol. 5(5), 11845-11852, 2018.
H. Zheng, G. Tian, Y. Zhao, C. Jin, F. Ju, and C. Wang, “Experimental study of R290 replacement R134a in cold storage air conditioning system,” Case Studies in Thermal Engineering, vol. 36, 102203, 2022.
J. K. Vaghela, “Comparative evaluation of an automobile air-conditioning system using R134a and its alternative refrigerants,” Energy Procedia, vol. 109, pp. 153-160, 2017.
S. Daviran, A. Kasaeian, S. Golzari, O. Mahian, S. Nasirivatan, and S. Wongwises, “A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems,” Applied Thermal Engineering, vol. 110, pp. 1091-1100, 2017.
A. Maiorino, C. Aprea, M. G. Del Duca, R. Llopis, D. Sánchez and R. Cabello, “R-152a as an alternative refrigerant to R-134a in domestic refrigerators: An experimental analysis,” International Journal of Refrigeration, vol. 96, pp.106-116, 2018.
B. O. Bolaji, “Experimental study of R152a and R32 to replace R134a in a domestic refrigerator,” Energy, vol. 35(9), pp. 3793-3798, 2010.
J. Sieres and J. M. Santos, “Experimental analysis of R1234yf as a drop-in replacement for R134a in a small power refrigerating system,” International Journal of Refrigeration, vol. 91, pp. 230-238, 2018.
Z. Li, K. Liang, and H. Jiang,“ Experimental study of R1234yf as a drop-in replacement for R134a in an oil-free refrigeration system,” Applied Thermal Engineering, vol. 153, pp. 646-654, 2019.
Y. Alhendal, A. Gomaa, G. Bedair, and A. Kalendar, “Thermal performance analysis of low-GWP refrigerants in automotive air- conditioning system,” Advances in Materials Science and Engineering, pp. 1-14, 2020.
T. Lee, K. H. Shin, J. Kim, D. Jung, and J. H. Kim, “Design optimization of external variable displacement compressor with R1234yf for vehicle air conditioning system,” Applied Thermal Engineering, vol. 198, 117493, 2021.
A. Morales-Fuentes, H. G. Ramírez-Hernández, S. Méndez-Díaz, S. Martínez-Martínez, F. A. Sánchez-Cruz, J. C. Silva-Romero, and H. D. García-Lara, “Experimental study on the operating characteristics of a display refrigerator phasing out R134a to R1234yf,” International Journal of Refrigeration, vol. 130, pp. 317-329, 2021.
F. W. A. B. Ojeda, M. V. A. Queiroz, D. F. M. Pico, J. A. dos Reis Parise, and E. P. Bandarra Filho, “Experimental evaluation of low-GWP refrigerants R513A, R1234yf and R436A as alternatives for R134a in a cascade refrigeration cycle with R744,” International Journal of Refrigeration, vol. 144, pp.175-187, 2022.
蘇金佳,冷凍與空調第二版,麥格羅希爾國際股份有限公司台灣分公司,2014。
Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach McGraw-Hill Education. New York, 2015.
徐有駿,“紅外線奈米塗料提升R-600a冰箱性能之研究”,國立台灣師範大學工業教育學系碩士班,碩士論文,2015。
許祺清、陳聰明,冷凍空調原理I,弘揚圖書有限公司,2010。
謝其霖, “蒸發冷卻模組應用於分離式空調機之開發與性能研究”,國立臺灣師範大學工業教育學系碩士班,碩士論文,2020。
李政毅, “窗型空調機的空氣分配器開發以及性能之研究”,國立臺灣師範大學工業教育學系碩士班,碩士論文,2017。
謝祥楷, “汽車空調機冷媒換裝與性能提升裝置之開發與研究”,國立臺灣師範大學工業教育碩士班,碩士論文,2022。
蔡燕山,汽車空調原理與實習,台科大圖書,2020。
陳昱榮, “汽車空調系統使用HC-600a冷媒之性能評估”,國立臺灣師範大學工業教育碩士班,碩士論文,2020。
ASHRAE, The 2017 ASHRAE Handbook – Fundamentals, 2017.
游朝傑, “碳氫混合冷媒應用於冷凍系統之性能與最佳化研究”,國立臺灣師範大學工業教育碩士班,碩士論文,2013。
SD5S11, Retrieved from https://www.acparts.com/product/new-original-sanden-compressor-6627/
RC10, Retrieved from https://www.yscco.com.tw/product-detail-2618578.html
CW121, Retrieved from https://www.tequipment.net/Yokogawa/CW121/Power-Loggers/
JPT-131, Retrieved from https://www.jetec.com.tw/chinese/product12_JPT131S.html
H-600, Retrieved from https://www.poly.my/product/h600-humidifier/
TTMi4N, Retrieved from https://www.jetec.com.tw/chinese/product21_TTMi4N.html
TTM-004W, Retrieved from https://www.digikey.hk/zh/products/detail/toho-electronics-inc/TTM-004W-R-A/16129661
ASHRAE: Psychrometric Analysis, Version: 7, ASHRAE, Inc., GA, USA, 2012.
中華民國環境部,中華民國國家溫室氣體排放清冊報告(2023年版),2023年8月。取自:https://unfccc.saveoursky.org.tw/nir/2023nir/uploads/00_nir_full.pdf?1109
Google Travel。各類交通方式的預估排放量。取自:https://support.google.com/travel/answer/13571996?hl=zh-TW-LK
Well-to-wheel (wake/wing) GHG intensity of motorised passenger transport modes, Retrieved from https://www.iea.org/data-and-statistics/charts/well-to-wheel-wake-wing-ghg-intensity-of-motorised-passenger-transport-modes-2
RTOC, 2018 REPORT OF THE Refrigeration, Air Conditioning and Heat Pumps, Retrieved from:https://ozone.unep.org/sites/default/files/2019-04/RTOC-assessment-report-2018_0.pdf
M. Rasti, S. Aghamiri, and M. S. Hatamipour, “Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a, ” International journal of thermal sciences, vol. 74, pp. 86-94, 2013.
M. A. Islam, K. Srinivasan, K. Thu, and B. B. Saha, “ Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems, ” international journal of hydrogen energy, vol. 42, pp. 26973-26983, 2017.
P. S. Raveendran and S. J. Sekhar, “Experimental studies on the performance improvement of household refrigerator connected to domestic water system with a water-cooled condenser in tropical regions,” Applied Thermal Engineering, vol. 179, 115684, 2020.
Davies, Thomas W., and Ottone Caretta, “A low carbon, low TEWI refrigeration system design,” Applied Thermal Engineering, vol. 24, pp. 1119-1128, 2004.
M. Rasti, S. Aghamiri, and M. S. Hatamipour,“Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a,” International journal of thermal sciences, vol. 74, pp. 86-94, 2013.
S. R. Padmavathy, M. P. Chockalingam, N. Kamaraj, G. Glivin, V. Thangaraj, and B. Moorthy,“Performance studies of low GWP refrigerants as environmental alternatives for R134a in low-temperature applications,” Environmental Science and Pollution Research, vol. 29, pp. 85945-85954, 2022.
環境部,溫室氣體排放係數總說明,2024年2月。取自:https://ghgregistry.moenv.gov.tw/upload/Tools/%E5%85%AC%E5%91%8A%E6%BA%AB%E5%AE%A4%E6%B0%A3%E9%AB%94%E6%8E%92%E6%94%BE%E4%BF%82%E6%95%B8.pdf
交通部,自用小客車使用狀況調查報告,2021年10月。取自:file:///C:/Users/user/Downloads/202110281340320.pdf
環境部,我國溫室氣體排放及減量總覽,2023年11月。取自:https://www.climatetalks.tw/old%E6%88%91%E5%9C%8B%E6%BA%AB%E5%AE%A4%E6%B0%A3%E9%AB%94%E6%8E%92%E6%94%BE%E5%8F%8A%E6%B8%9B%E9%87%8F%E7%B8%BD%E8%A6%BD