研究生: |
吳宜洲 Yi-Chou Wu |
---|---|
論文名稱: |
奈米粒子與表面嫁接聚左旋離氨酸的奈米複合薄膜的製備和鑑定並應用於表面增強拉曼散射 Fabrication and Characterization of Nanoparticle/Surface-Grafted Poly(L-lysine) Nanocomposite Film - And Application in Surface Enhanced Raman Scattering (SERS) |
指導教授: | 陳家俊 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 銀 、金 、聚左旋離氨酸 、表面增強拉曼散射 |
論文種類: | 學術論文 |
相關次數: | 點閱:283 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銀和金奈米粒子具有增強拉曼散射的特性。而聚左旋離氨酸,是一種生物可相容的水溶性聚肽分子,將其嫁接於矽晶片基底上,使得其在水溶液中能膨脹形成類陣列式的隨機線圈結構,而其支鏈露出的帶正電的氨基,容易因庫倫靜電力使得帶負電的奈米粒子吸附於聚左旋離氨酸的氨基上,形成一種生物可相容奈米複合薄膜。此薄膜材料可作為表面增強拉曼散射的的基底,我們使用羅單寧6G分子來找出最佳表面增強拉曼散射並探討薄膜對於表面增強拉曼散射的影響。
Silver and Gold nanoparticle have a characteristic of surface-enhanced Raman scattering (SERS). Poly(L-lysine) is a biocompatible polypeptide and can swell to the random coil in aqueous solution by grafted on silicon substrate. The amino group with positive charge can adsorb the nanoparticle to form the biocompatible nanocomposite film. This film can use as the substrate of surface-enhanced Raman scattering (SERS). We use Rhodamine 6G to find the best SERS and the effect of film to SERS.
1. Hertel, T.; Moos, G. Phys. Rev. Lett. 1999, 84, 5002.
2. Brus, L. E. J. Phys. Chem. 1994, 98, 3575.
3. Wang, Z. H.; Choi, C. J.; Kim, B. K.; Kim, J. C.; Zhang, Z. D. J. AlloyCompd. 2003, 351, 319.
4. Alivisatos, A. P. Science 1996, 271, 933.
5. Chen, C. C.; Herhold,A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
6. Glinka, Y. D.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.; Tolk, N. H. Phys. Rev. B 2001, 64, 085421.
7. Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
8. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
9. Nie, S.; Emory, S. R. Science 1997, 275, 1102.
10. Xu, H.; Bjerneld, E. J.; Kall, M.; Borjesson, L. Phys. Rev. Lett. 1999, 83, 4357.
11. Qi, ZM.; Honma, I.; Ichihara, M.; Zhou, HS. Adv. Fun. Mater. 2006, 16, 377.
12. Yang, T.; Ahmad, E. Suzuki TJOURNAL OF APPLIED PHYSICS 2002, 91, 6860.
13. Yoda, S.; Hasegawa, A.; Suda, H.; Uchimaru, Y.; Haraya, K.; Tsuji, T. Otake K CHEMISTRY OF MATERIALS 16 2004, 12, 2363.
14. Peiro, AM.; Doyle, G.; Mills, A.; Durrant, JR. Adv. Mater. 2005, 17, 2365.
15. Jaworek, T.; Neher, D.; Wegner, G.; Wieringa, R. H.; Schouten,A. J. Science 1998, 279, 57.
16. (a)Chang, Y.-C.; Frank, C. W.; Forstmann, G. G.; Johannsmann,D. J. Chem. Phys. 1999, 111, 6136. (b)Hartmann, L.; Kratzmu¨ ller, T.; Braun, H.-G.; Kremer, F. Macromol. Rapid Commun. 2000, 21, 814.
17. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Chem. Rev. 1999, 99, 2957.
18. Wang, Y.; Chang, Y. C. MACROMOLECULES 2003, 36, 6511.
19. Wang, Y.; Chang, Y. C. Langmuir 2002, 18, 9859.
20. Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
21. Brown, K. R.; Fox, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118, 1154.
22. Garcia-Vidal, F. J.; Pendry, J. B. Phys. Rev. Lett. 1996, 77, 1163.