簡易檢索 / 詳目顯示

研究生: 張哲誌
Che-Chi Chang
論文名稱: 東沙環礁潟湖浮游生物群聚呼吸率時空變異之研究
Spatial and Temporal Variations of Plankton Community Respiration in Dongsha Atoll
指導教授: 陳仲吉
Chen, Chung-Chi
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 浮游生物群聚呼吸率東沙環礁潟湖
英文關鍵詞: plankton community respiration, Dongsha Atoll, lagoon
論文種類: 學術論文
相關次數: 點閱:210下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為瞭解東沙環礁潟湖之浮游生物群聚呼吸率(Plankton community respiration;CR)及有機碳循環的變化,本研究於民國99年的5、7、9月和100年2月在東沙潟湖進行相關調查研究,並分析其物理、化學水文及生物參數,以期瞭解影響有機碳循環之群聚呼吸率的時、空變異,並探討影響其變化之主因。結果顯示東沙潟湖內群聚呼吸率在春季(五月)、夏季(七月)、秋季(九月)和冬季(二月)的變化範圍分別為41.1~279.2、9.0~116.0、41.9~113.9和0.0~69.8 mg C m-3 d-1,其中以冬季最低。而浮游生物群聚生物量及生產力之多寡可能是群聚呼吸率變化的主控因素,此結果可由群聚呼吸率、葉綠素甲濃度、異營性細菌生物量或生產力呈顯著相關(p<0.05)得到應證。此外,由不同季節分析結果顯示,春季的群聚呼吸率可能主要受控於浮游植物生物量的多寡,其中又以矽藻的貢獻度最大,其可由群聚呼吸率與葉綠素甲或矽酸鹽的顯著相關得到驗證;夏季的群聚呼吸率未與任何參數有顯著相關,若以細菌生長效率推估異營性細菌呼吸率,其約佔24.2%,但無法解釋群聚呼吸率的主要來源;秋季群聚呼吸率與異營性細菌生物量有顯著相關(p<0.05),顯示其應為影響群聚呼吸率變化之主因;冬季的群聚呼吸率極低,可能肇因於浮游生物量太低,亦可能受到潮汐作用或海流影響,致使潟湖內之無機營養鹽和浮游生物遭到稀釋或攜出,進而降低其群聚呼吸率。研究期間,初級生產力和群聚呼吸率之平均比值(P/R ratio)接近或大於1(春季:1.35±1.07;夏季:1.01±0.65;秋季:0.90±0.63;冬季:3.03±3.82),顯示東沙環礁潟湖為平衡性或自營性生態系,此結果建議本潟湖應有額外的有機碳,供其它生物利用或輸出至鄰近海洋生態系。

    This study was designed to explore spatio-temporal variations of plankton community respiration (CR) and organic carbon cycle in Dongsha Atoll. Four curises were performed in different seasons. Results showed that the ragne of CR in spring (May), summer (July), autumn (September), and winter (February) were 41.1~279.2, 9.0~116.0, 41.9~113.9 and 0.0~69.8 mg C m-3 d-1, respectively. The lowest rate was observed in winter. Further analyses suggest that the CR was mostly related to biomass and production of plankton communities, especially phytoplankton and bacterioplankton. This assumption can be verified by significant relationships between mean values (per m3) over water depth of CR vs. chlorophyll a (Chl a), heterotrophic bacterial biomass (BB) or production (BP; all p<0.05). Seasonally, the rate of CR might mostly attribute to phytoplankton, particularly diatom, in spring. This assumption could be validated by significant regressions between CR and Chl a or silicate. In summer, the CR was not related to any observed variables. Even though the estimated bacterial respiration accounting for 24.2% of CR, it can not explain the variation of CR rate. In autumn, CR was significantly related to BB (p<0.05), and it suggests that the CR was dominated by bacterioplankton. As state above, the lowest CR was observed in winter, and it might be due to low plankton biomass. Moreover, the mean ratio of primary production to community respiration was close to or higher than 1, and it indicates that the ecosystem of Dongsha Atoll was either carbon balance or autotrophic. It also suggests that there was residual organic carbon deposited to the bottom of Dongsha Atoll or exported to nearby ecosystems.

    中文摘要....................................................I 英文摘要..................................................III 誌謝.......................................................V 目次......................................................VI 表次......................................................IX 圖次......................................................XI 第壹章、前言.................................................1 第貳章、材料與方法............................................6 2.1 調查測站與採樣計畫........................................6 2.2 無機營養鹽 (NO2-、NO3-、PO43-、SiO42-)....................7 2.3 溶解態有機碳 (Dissolved Organic Carbon;DOC).............7 2.4 葉綠素甲 (Chlorophyll a concentration;Chl a)...........7 2.5 初級生產力 (Primary Production;PP)......................8 2.6 異營性細菌生物量 (Bacterial Biomass;BB)..................9 2.7 異營性細菌生產力 (Bacterial Production;BP)...............9 2.8 浮游生物群聚呼吸率 (Planktonic Community Respiration;CR)10 2.9 浮游植物色素分析 (Phytoplankton pigment).................11 2.10 浮游動物豐度 (Zooplankton Abundance)...................12 2.11 資料整合與分析.........................................12 第參章、結果................................................14 3.1 物理參數的時空變異.......................................14 3.2 無機營養鹽(NO2-+NO3-、PO43-、SiO42-)的時空變化............15 3.3 溶解態有機碳............................................17 3.4 葉綠素甲...............................................18 3.5 初級生產力.............................................19 3.6 異營性細菌生物量.........................................20 3.7 異營性細菌生產力.........................................21 3.8 群聚呼吸率與P/R ratio...................................22 3.9 浮游植物種類組成.........................................23 3.10 浮游動物豐度...........................................24 第肆章、討論................................................25 4.1 東沙環礁潟湖的物理水文....................................25 4.2 影響潟湖浮游植物生長之可能因素.............................26 4.3 浮游生物對群聚呼吸率之影響................................28 4.4 東沙環礁潟湖P/R ratio和有機碳循環.........................32 第伍章、結論................................................34 參考文獻...................................................36 表列......................................................43 圖列......................................................60

    Aristegui, J., Montero, M., Ballesteros, S., Basterretxea, G., & Van Lenning, K. (1996). Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic Peninsula during austral summer: implications for carbon flux studies. Marine Ecology Progress Series, 132, 191-201.

    Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., & Yoo, K. (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1), 53-60.

    Charpy, L. (1996). Phytoplankton biomass and production in two Tuamotu atoll lagoons (French Polynesia). Marine Ecology Progress Series, 145(1), 133-142.

    Charpy, L., Rodier, M., Fournier, J., Langlade, M. J., & Gaertner-Mazouni, N. (2012). Physical and chemical control of the phytoplankton of Ahe lagoon, French Polynesia. Marine Pollution Bulletin, 65(10-12), 471-477.

    Charpy-Roubaud, C., Charpy, L., & Cremoux, J.-L. (1990). Nutrient budget of the lagoonal waters in an open central South Pacific atoll (Tikehau, Tuamotu, French Polynesia). Marine Biology, 107(1), 67-73.

    Chen, C.-T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II, 56(8), 578-590.

    Cho, B. C., & Azam, F. (1988). Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 332(6163), 441-443.

    Clavier, J., & Garrigue, C. (1999). Annual sediment primary production and respiration in a large coral reef lagoon (SW New Caledonia). Marine Ecology Progress Series, 191, 79-89.

    Cole, J. J., Findlay, S., & Pace, M. L. (1988). Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series, 43(1), 1-10.

    Del Giorgio, P. A., Cole, J. J., & Cimbleris, A. (1997). Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385(6612), 148-151.

    Domingues, R. B., Anselmo, T. P., Barbosa, A. B., Sommer, U., & Galvão, H. M. (2011). Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuary. Estuarine, Coastal and Shelf Science, 91(2), 282-297.

    Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C.-S., Tang, T.Y., & Yang, Y.-J. (2004). Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4), 1105-1130.

    Dumas, F., Le Gendre, R., Thomas, Y., & Andréfouët, S. (2012). Tidal flushing and wind driven circulation of Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia) from in situ observations and numerical modelling. Marine Pollution Bulletin, 65(10), 425-440.

    Ferrier-Pages, C., Leclercq, N., Jaubert, J., & Pelegrí, S. (2000). Enhancement of pico-and nanoplankton growth by coral exudates. Aquatic Microbial Ecology, 21, 203-209.

    Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M., Got, P., Floc’h, E. L., Mostajir, B., Roques, C., Sempéré, R., Sime-Ngando, T., & Vidussi, F. (2014). Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiology Ecology, 87(3), 757-769.

    Fuhrman, J., & Azam, F. (1982). Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology, 66(2), 109-120.

    Gaarder, T., & Gran, H. H. (1927). Investigations of the production of plankton in the Oslo Fjord. Conseil permanent international pour l'exploration de la mer.

    Gaudy, R., & Verriopoulos, G. (2004). Spatial and seasonal variations in size, body volume and body proportion (prosome: urosome ratio) of the copepod Acartia tonsa in a semi-closed ecosystem (Berre lagoon, western Mediterranean). Hydrobiologia, 513(1-3), 219-231.

    Gong, G. (1992). Chemical hydrography of the Kuroshio front in the sea northeast of Taiwan. Ph.D. Dissertation, Institute of Oceanography, National Taiwan University, 204 pp.

    Haas, A. F., Nelson, C. E., Kelly, L. W., Carlson, C. A., Rohwer, F., Leichter, J. J., Wyatt, A., & Smith, J. E. (2011). Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS One, 6(11), e27973.

    Kimmerer, W. J., & Thompson, J. K. (2014). Phytoplankton Growth Balanced by Clam and Zooplankton Grazing and Net Transport into the Low-Salinity Zone of the San Francisco Estuary. Estuaries and Coasts. doi:10.1007/s12237-013-9753-6.

    Kürten, B., Painting, S. J., Struck, U., Polunin, N. V., & Middelburg, J. J. (2013). Tracking seasonal changes in North Sea zooplankton trophic dynamics using stable isotopes. Biogeochemistry, 113(1-3), 167-187.

    Lancelot, C., & Billen, G. (1984). Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the Southern Bight of the North Sea. Limnology and oceanography, 29(4), 721-730.

    Lefebvre, S., Claquin, P., Orvain, F., Veron, B., & Charpy, L. (2012). Spatial and temporal dynamics of size-structured photosynthetic parameters (PAM) and primary production (13C) of pico- and nano-phytoplankton in an atoll lagoon. Marine Pollution Bulletin, 65(10-12), 478-489.

    Liu, A. K., Chang, Y. S., Hsu, M. K., & Liang, N. K. (1998). Evolution of nonlinear internal waves in the East and South China Seas. Journal of Geophysical Research, 103(4), 7995-8008.

    Maita, Y., Parsons, T., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Pergamon press.

    Nishino, S., Kikuchi, T., Yamamoto-Kawai, M., Kawaguchi, Y., Hirawake, T., & Itoh, M. (2011). Enhancement/reduction of biological pump depends on ocean circulation in the sea-ice reduction regions of the Arctic Ocean. Journal of Oceanography, 67(3), 305-314.

    Obernosterer, I., Christaki, U., Lefèvre, D., Catala, P., Wambebe, F. V., & Lebaron, P. (2008). Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom induced by natural iron fertilization in the Southern Ocean. Deep Sea Research Part II, 55(5-7), 777-789.

    Pai, S., Kuo, T., Chung, S., & Su, T. (1998). Azide-modified shibala colorimetric method for the determination of dissolved oxygen and an assessment of its applicability to environment studies. Chemistry (The Chinese Chem. Soc., Taipei), 56, 173-185.

    Pan, X., Wong, G. T., Shiah, F.-K., & Ho, T.-Y. (2012). Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea. Journal of Oceanography, 68(3), 427-437.

    Ridgwell, A. (2011). Evolution of the ocean's “biological pump”. Proceedings of the National Academy of Sciences, 108(40), 16485-16486.

    Rochelle-Newall, E. J., Torréton, J. P., Mari, X., & Pringault, O. (2008). Phytoplankton-bacterioplankton coupling in a subtropical South Pacific coral reef lagoon. Aquatic Microbial Ecology, 50, 221-229.

    Saba, G. K., Steinberg, D. K., & Bronk, D. A. (2011). The relative importance of sloppy feeding, excretion, and fecal pellet leaching in the release of dissolved carbon and nitrogen by Acartia tonsa copepods. Journal of Experimental Marine Biology and Ecology, 404(1), 47-56.

    Sadro, S., Nelson, C. E., & Melack, J. M. (2011). Linking diel patterns in community respiration to bacterioplankton in an oligotrophic high-elevation lake. Limnology and oceanography, 56(2), 540-550.

    Shiah, F.-K., Chung, S.-W., Kao, S.-J., Gong, G.-C., & Liu, K.-K. (2000). Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research, 20(15), 2029-2044.

    Shiah, F.-K., Chen, T.-Y., Gong, G.-C., Chen, C.-C., Chiang, K.-P., & Hung, J.-J. (2001). Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the East China Sea. Aquatic Microbial Ecology, 23(3), 273-282.

    Shiah, F.-K., Gong, G.-C., & Chen, C.-C. (2003). Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6), 1295-1309.

    Smith, E. M., & Kemp, W. M. (2003). Planktonic and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment. Aquatic Microbial Ecology, 30(3), 251-261.

    Steinberg, D. K., Lomas, M. W., & Cope, J. S. (2012). Long‐term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochemical Cycles, 26(1), 1-16.

    Strickland, J. D. H. (1972). A practical handbook of seawater analysis. Fisheries Research Board of Canada.

    Thomas, Y., Garen, P., Courties, C., & Charpy, L. (2010). Spatial and temporal variability of the pico- and nanophytoplankton and bacterioplankton in a deep Polynesian atoll lagoon. Aquatic Microbial Ecology, 59, 89-101.

    Tilstone, G., Smyth, T., Poulton, A., & Hutson, R. (2009). Measured and remotely sensed estimates of primary production in the Atlantic Ocean from 1998 to 2005. Deep Sea Research Part II: Topical Studies in Oceanography, 56(15), 918-930.

    Torréton, J.-P., & Dufour, P. (1996). Temporal and spatial stability of bacterioplankton biomass and productivity in an atoll lagoon. Aquatic Microbial Ecology, 11(3), 251-261.

    Torréton, J.-P., Rochelle-Newall, E., Jouon, A., Faure, V., Jacquet, S., & Douillet, P. (2007). Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuarine, Coastal and Shelf Science, 74(4), 766-776.

    Torréton, J.-P., Rochelle-Newall, E., Pringault, O., Jacquet, S., Faure, V., & Briand, E. (2010). Variability of primary and bacterial production in a coral reef lagoon (New Caledonia). Marine Pollution Bulletin, 61(7-12), 335-348.

    Trabelsi, A., & Rassoulzadegan, F. (2011). Effect of bacterial community dynamics on DOC seasonal changes in the north-western Mediterranean Sea. Journal of plankton research, 33(8), 1249-1262.

    Webb, W. L., Newton, M., & Starr, D. (1974). Carbon dioxide exchange of Alnus rubra. Oecologia, 17(4), 281-291.

    Xu, H., Paerl, H. W., Qin, B., Zhu, G., & Gao, G. (2010). Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and oceanography, 55(1), 420-432.

    王玉懷 (2009) 東沙環礁國家公園海洋環境長期調查研究(一)。海洋國家公園管理處委託辦理報告,高雄市。

    宋克義 (2009) 東沙環礁珊瑚群聚調查分析與復育策略研究。海洋國家公園管理處委託研究報告,高雄市。

    鄭明修,邵廣昭、戴昌鳳、陳正平、林秀美和孟培傑 (2005) 東沙海域生態資源基礎調查研究。內政部營建署委託辦理報告,台北市。

    下載圖示
    QR CODE