研究生: |
張家昌 Chia-Chang Chang |
---|---|
論文名稱: |
具導向性自組裝能力的掌性氧釩錯合物應用在主族金屬 (I) 和 (II) 離子篩選及其衍生之不對稱氧化反應的研究 The Applications of Directed Self-Assembly of Chiral Oxidovanadium(V) Methoxides for Metal (I) and (II) Ion Specific Recognition and Enantioselective Aerobic Oxidation |
指導教授: |
陳建添
Chen, Chien-Tien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 203 |
中文關鍵詞: | 四聚簇狀體 、離子篩選 、不對稱氧化反應 、四股螺旋體 |
英文關鍵詞: | tetrameric cluster, specific recognition, asymmetric catalytic aerobic oxidation, quadruple helix |
論文種類: | 學術論文 |
相關次數: | 點閱:203 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,我們實驗室已成功發展單向四聚簇狀體之研究,可將此四聚簇狀體應用在鹼金屬族及銀離子等重金屬的離子篩選上,歸納出單向四聚簇狀體對鹼金屬族離子的增效式篩選強度為K+ > Cs+ >> Na+ > Li+,藉此性質模擬鉀離子通道的KcsA膜蛋白,其最外層開口處四個等手性胺基甲醯胺基的鉗合環境相同。
本論文藉此修飾氧釩錯合物的結構,將偏釩酸鹽及具自組裝性質的N-亞柳胺基酸衍生之掌性氧釩錯合物形成雙向四聚簇狀體,並應用於增效式篩選主族金屬離子及不對稱氧化反應。在鹼金屬族離子的增效式篩選強度為 K+ >> Na+ > Cs+ > Li+ ,藉此性質模擬自然界中的端粒,由於雙向四聚簇狀體的空間效應導致與單相四聚簇狀體結果不同。另外,在不對稱氧化α-羥基芐基扁桃酸硫酯及安息香反應中,利用雙溶劑系統時選擇因子效果分別為 9及6.9為最佳。由本實驗室發展之鹼土金屬離子在單向四聚簇狀體的特性,此氧釩錯合物在與鹼土金屬鉗合時會以四股螺旋體形成。
In the past five years, a series of C4-symmetric tetrameric cluster have developed by our lab. The application of directed self-assembly of chiral oxidovanadium methoxides for metal (I) and silver ion specific recognition. The synergistic recognition of Metal (I) ion were K+ > Cs+ >> Na+ > Li+ by C4-symmetric tetrameric cluster. The tetrameric cluster imitate KcsA membrane protein with a synergistic binding of K+ by four homochiral glycine residues near the opening site in KcsA.
In this way, we developed synergistic alkali metal ion recognition and asymmetric catalytic aerobic oxidation by alkali metal metavanadate and chiral dimer oxidovanadium(V) N-salicylidene complex bearing a bridge between C(5) positions that can self-assemble into an C4-symmetric quadruple helix. The synergistic recognition of metal (I) ion were K+ >> Na+ > Cs+ > Li+ by directed self-assembly quadruple helix, its result was different from C4-symmetric tetrameric cluster for spacer effect. Application of quadruple helix imitate telomere. It used two solvents system to react on enantioselective aerobic oxidation of α-hydroxyl-S-benzyl-mandelate, the best krel is 9 and benzoin is 6.9. Induced by the alkaline-earth metal ion, the dimeric complex can self-assemble into a C4-symmetric quadruple helix.
1. Jiang, M.; Shen, T.; Xu, H.-B.; Liu, C.-L. Progress in Chemistry 2002, 14, 263.
2. (a) Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon R. Science 1998, 280, 69. (b) Gouaux1, E.; MacKinnon R. Science 2005, 310, 1461. (c) Valiyaveetil, F. I.; Leonetti, M.; Muir, T. W.; MacKinnon, R. Science 2006, 314, 1004. (d) 趙文龍; 隋森芳, 科學通報, 2004, 49, 403.
3. (a) Orlova, E. V.; Rahman, M. A.; Gowen, B.; Volynski, K. E.; Ashton, A. C.; Manser, C.; van Heel, M.; Ushkaryov, Y. A. Nature Struc. Biol. 2000, 7, 48. (b) Saibil, H. R. Nature Struc. Biol. 2000, 7, 3.
4. (a) Bourgion, M.; Wong, K. H.; Hui, J. Y.; Smid, J. J. Am. Chem. Soc. 1975, 97, 3462. (b) Vetrichelvan, M.; Lai, Y. H.; Mok, K. F. Dalton Trans. 2003, 295.
5. (a) Shi, X.; Fettinger, J. C.; Davis, J. T. J. Am. Chem. Soc. 2001, 123, 6738. (b) Wu, G.; Wong, A.; Gan, Z.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 7182. (c) Gill, M. L.; Strobel, S. A.; Loria, J. P. J. Am. Chem. Soc. 2005, 127, 16723. (d) Kotch, F. W.; Sidorov, V.; Lam, Y. F.; Kayser, K. J.; Li, H.; Kaucher, M. S.; Davis, J. T. J. Am. Chem. Soc. 2003, 125, 15140.
6. Kim, J.; Kim, S.-G.; Seong, H. R.; Ahn, K. H. J. Org. Chem. 2005, 70, 7227.
7. Lin, Y.-H.; Kuo, T.-S.; Chen, C.-T. J. Am. Chem. Soc. 2008, 130, 12842.
8. (a) Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 2000, 39, 1052. (b) Chen, C.-T.; Hua, W.-P. J. Am. Chem. Soc. 2002, 124, 6246.
9. (a) Matsumoto, M.; Watanabe, N. J. Org. Chem. 1984, 49, 3435. (b) Miyata, A.; Murakami, M.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2001, 42, 7067. (c) Dijksman, A.; Arends, I. W. C. E.;Sheldon, R. A. Chem. Commun. 1999, 1591. (d) Marko, I.E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.; Urch, C.J.; Brown, S. M. J. Am. Chem. Soc. 1997, 119, 12661. (e) Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144. (f) Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 1998, 39, 5557.
10. (a) Nishimura, T.; Kakiuchi, N.; Inoue, M.; Uemura, S. Chem. Commun. 2000, 1245. (b) Kaneda, K.; Fujii, M.; Morioka, K. J. Org. Chem. 1996, 61, 4502. (c) Peterson, K. P.; Larock, R. C. J. Org. Chem. 1998, 63, 1245. (d) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750. (e) Schultz, M. J.; Park, C. C.; Sigman, M. S. Chem. Commun. 2002, 3034.
11. (a) Vilas Boas, L.; Costa Pessoa, J.; “In Comprehensive Coordination Chemistry”; (b) Dichmann, K.; Hamer, G.; Nyburg, D. C.; Reynolds, W. F. J. Chem. Soc. D 1970, 1295.
12. (a) Dodge, R. P.; Templeton, D. H.; Zalkin, A. J. Chem. Phys. 1961, 35, 55. (b) Hon, P. K.; Belford, R. L.; Pfluger, C. E. J. Chem. Phys. 1965, 43, 3111.
13. Nakagima, K.; Kojima, M.; Fujita, J. Chem. Let. 1986, 1483.
14. Kaneda, K.; Kawanishi, Y.; Jitsukawa, K.; Teranishi, S. Tetrahedron Lett. 1983, 24, 5009.
15. (a) Katsuki, T.; Shapless, K. B. J. Am. Chem. Soc.1980, 102, 5974. (b) Allision, K.; Johnson, P.; Foster, G.; Sparke, M. B. Ind. Eng. Chem. Prod. Res. Dev. 1966, 5, 116. (c) Arzoumanian, H.; Hartig, U.; Metzger, J. Tetrahedron Lett. 1974, 101.
16. (a) Hata, E.; Takai, T.; Yamada, T.; Mukaiyama, T. Chem. Let. 1994, 1849. (b) Takai, T.; Hata, E.; Mukaiyama, T. Chem. Let. 1994, 885.
17. (a) Sheng, M. N.; Zajacek, J. G. J. Org. Chem. 1968, 33, 588. (b) Nakagima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 63, 2620. (c) Nakagima, K.; Kojima, M.; Fujita, J. Bull. Chem. Soc. Jpn. 1990, 62, 760. (d) Yamamoto, K.; Oyaizu, K.; Iwasaki, N.; Tsuchida, E. Chem. Let. 1993, 1223. (e) Maeda, Y.; Kakiuchim, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S. J. Org. Chem. 2002, 67, 6718.
18. (a) Kirihara, M.; Ochiai, Y.; Takizawa, S.; Talahata, H.; Nemoto, H. Chem. Commun. 1999, 1387. (b) Velusamy, S.; Punniyamurthy, T. Org. Lett. 2004, 6, 217.
19. (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374. (b) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044. (c) Marko, I. E.; Gautier, A.; Chelle-Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J.; Brown, S. M. J. Org. Chem. 1998, 63, 7576. (d) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. J. Org. Chem. 1999, 64, 2433.
20. Iwahama, T.; Yoshino, Y.; Keitoku, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2000, 65, 6502.
21. Velusamy, S.; Ahamed, M.; Punniyamurthy, T. Org. Lett. 2004, 6, 4821.
22. Murahashi, S.-I.; Naota, T. Hirau, N. J. Org. Chem. 1993, 58, 7318.
23. Lorber, C. Y.; Smidt, S. P. Osborn, J. A. Eur. J. Inorg. Chem. 2000, 655.
24. Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043.
25. Vedejs, E.; MacKay, J. A. Org. Lett. 2001, 3, 535.
26. Choi, J. H.; Choi, Y. K.; Kim, Y. H.; Park, E. S.; Kim, E. J.; Kim, M.-J.; Park, J. J. Org. Chem. 2004, 69, 1972.
27. (a) Masutani, K.; Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron Lett. 2000, 41, 5119. (b) Jensen, D. R.; Puglsey, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001, 123, 7475. (c) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725. (d) Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835. (e) Mandel, S. K.; Jensen, D. R.; Puglsey, J. S.; Sigman,M. S. J. Org. Chem. 2003, 68, 4600. (f) Mueller, J. A.; Jensen, D. R.; Sigman, M. S. J. Am. Chem. Soc. 2002, 124, 8202. (g) Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 15957.
28. Miersch, O.; Kramell, R.; Parthier, B.; Wastemack, C. Phytochemistry 1999, 50, 353.
29. Queiroz, N.; do Nascimento, G. M. Tetrahedron Lett. 2002, 13, 1461.
30. Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090.
31. (a) Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y. S.; Chen, C.-T. Proc. Natl. Acad. Sci. USA 2006, 103, 3522. (b) Chen, C.-T.; Bettigeri, S.; Weng, S.-S.; Pawar, V. D.; Lin, Y.-H.; Liu, C.-Y.; Lee, W.-Z. J. Org. Chem. 2007, 72, 8175.
32. Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964.
33. (a) D'Accolti, L.; Detomaso, A.; Fusco, C.; Rosa, A.; Curci, R. J. Org. Chem. 1993, 58, 3600. (b) Ooi, T.; Saito, A.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 3220. (c) Kallfass, U.; Enders, D. Angew. Chem., Int. Ed. 2002, 41, 1743.
34. Pinnavaia, T. J.; Marshall, C. L.; Mettler, C. M.; Fisk, C. L.; Miles,
H. T.; Becker, E. D. J. Am. Chem. Soc. 1978, 97, 3625.
35. Daniel, P.; Sivasubramanian, A.; Rene, R. Chem. Commun. 1996, 1913 .
36. Van Staveren, C. J.; van Eerden, J.; van Veggel, F. C. J. M.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem. Soc. 1988, 110, 4994.
37. Munot Y. S.; Salunke S. B.; Wang Y.-C.; Lin C.-C.; Chen C.-C.; Liu,Y.-H.; Lin R.-K.; Chen, C.-T. Adv. Funct. Mater. 2008, 18, 527.
38. Hall,S. S.; Doweyko, L. M.; Doweyko,A. M.; Zilenovski, J. S. R. J. Med. Chem. 1977, 20, 1239.
39. Breslow J. Am. Chem. Soc. 1958, 80, 3719.