簡易檢索 / 詳目顯示

研究生: 陳元裕
Chen, Yuan-Yu
論文名稱: 中頻振動輔助研磨機開發與單晶鑽石陣列微溝磨削研究
Development of medium-frequency vibration assisted grinding machine and research of grinding micro-groove array on a monocrystalline diamond
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 154
中文關鍵詞: 單晶鑽石微溝槽陣列智能化磨削力回饋中頻振動輔助磨削
英文關鍵詞: Monocrystalline diamond, Microgroove array, Intellectualized grinding-force feedback, Medium-frequency vibration-assisted grinding
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.007.2018.E08
論文種類: 學術論文
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在對單晶鑽石材料,開發一種「中頻振動輔助磨削」的加工技術,目的在單晶鑽石材料上進行陣列微溝槽的磨削研究。實驗之初,先行開發低重心且左右對稱的高速研磨機雛型系統,並於此系統上建立「振動輔助磨削」、「高速快淺磨削」及「智能化磨削力回饋」等技術,使單晶鑽石能在數百nm深度下被磨削加工。「中頻振動」係利用壓電平台產生頻率500 Hz,振幅10 nm的往復式振動,用以推動單晶鑽石撞擊高速旋轉中的含硼聚晶鑽石磨輪,使單晶鑽石表面產生奈米級的微裂紋,以便磨輪能輕易將表面破碎層磨除,並降低磨削阻抗。實驗證實,在中頻振動輔助下,每道磨削深度0.3 μm時,可獲得Ra 0.03 µm的表面粗糙度,微溝槽能在高速快淺磨削機制下成形;為獲得更高的微溝表面品質,本研究於研磨機雛型系統上,建構智能化磨削技術,透由偵測壓電平台的即時回饋電流,感測磨削力,進行磨削進給速度之調變。由實驗證明,表面粗糙度從Ra 0.03 µm改善至Ra 0.01 µm,並能降低微溝表面的微細裂痕與顫振紋路發生。實驗證實,本研究成功磨削出3×3陣列,彼此間距80 μm的微細溝槽,且溝槽表面性狀具高一致性,證實本研究所開發之製程技術,能於單晶鑽石材料上,能進行微細溝槽之加工,其製程所需成本低,且容易控制,深具商業化價值。

    This study presents the development of a medium-frequency vibration-assisted grinding technique for grinding microgroove array on monocrystalline diamond (MCD). First of all, a high-speed grinding machine prototype with low-profile and bilateral symmetry design is developed in this study. A vibration-assisted technique, a high-speed & fast-shallow grinding, and an intellectualized grinding-force feedback are constructed on the prototype for grinding microgroove within a few hundred micrometres in depth for each stroke. The technique of ‘medium-frequency vibration’, by which a reciprocating vibration with the frequencies of 500 Hz and 10 nm in amplitudes is generated by the piezoelectric actuator, is operated to push the workpiece (i.e. MCD) for precisely crushing the high-speed rotation polycrystalline diamond (PCD) grinding wheel. Numerous nano-scale microcracks are thus created on the surface of the workpiece so that these microcracks facilitate material removal by the PCD wheel tool, and also helped lengthen tool life. Experimental results show that the microgrooves with a surface roughness of Ra0.03 µm can be achieved when medium-frequency vibration assistance and the 0.3 μm/stroke grinding depth are employed. Combining the designed intellectualized grinding-force feedback with regulating the real-time current of grinding, the surface finish of microgroove is improved from Ra0.03 µm drop to Ra0.01 µm, which minimizes microcracks and chatter marks. A consistent microgroove array of 3×3 with 80 μm in interval is verified successfully demonstrated that the proposed medium-frequency vibration-assisted grinding technique and the intellectualized grinding-force feedback should be useful for machining the microgrooves on monocrystalline diamond. It is expected that the developed hybrid techniques of this study will be contribute to the field of biomedical engineering industries.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 viii 圖目錄 x 符號說明 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 研究方法 3 1.5 文獻回顧 5 1.5.1 精微鑽石工具機發展 5 1.5.2 微溝槽成形應用 6 1.5.3 含硼聚晶鑽石成形與應用 9 1.5.4 振動輔助技術應用 11 第二章 實驗原理 15 2.1 鑽石與石墨材料特性 15 2.1.1 單晶鑽石合成原理 17 2.1.2 磨削加工效果與單晶鑽石晶格方向討論 18 2.2 磨削原理與應用 21 2.2.1 磨削原理 21 2.2.2 硬脆材料移除機制 25 2.3 壓電效應與控制 26 2.3.1 壓電效應的位移性能 27 2.3.2 振動磨削原理與特徵 28 2.4 研磨機伺服系統控制與訊號回饋 30 2.5 智能化線上磨削力感測與回饋控制 31 第三章 實驗所需設備 33 3.1 CNC立式綜合加工機 33 3.2 CNC線切割放電機 33 3.3 放電鑽孔機 34 3.4 高速主軸與驅動控制器 35 3.5 量測儀器 36 3.5.1 光學工具顯微鏡 36 3.5.2 掃描式電子顯微鏡 36 3.5.3 雷射共軛焦顯微鏡 37 3.5.4 共焦拉曼光譜量測設備 38 3.6 實驗所用材料 39 3.6.1 含硼聚晶鑽石磨輪基材 39 3.6.2 銅線電極 40 3.6.3 人造單晶鑽石 41 3.6.4 球墨鑄鐵(Ductile iron) 41 3.6.5 鋁合金(Al 6061) 42 第四章 實驗方法 43 4.1 振動輔助研磨機設計與開發 44 4.1.1 振動輔助研磨機設計 44 4.1.2 振動輔助研磨機分析 48 4.1.3 結構鑄造、製作與組裝 54 4.2 含硼聚晶鑽石輪刀設計開發 56 4.2.1 含硼聚晶鑽石輪刀設計 56 4.2.2 錐度彈簧套筒設計與成形 56 4.2.3 含硼聚晶鑽石輪刀之錐孔放電成形 58 4.3 含硼聚晶鑽石輪刀修整實驗 61 4.3.1 w-EDM輪刀磨刃放電修整成形 61 4.3.2 放電之隅角磨耗與磨刃輪廓修整 64 4.3.3 含硼聚晶鑽石磨輪輪刀拉曼分析 65 第五章 單晶鑽石微溝槽磨削成形實驗 67 5.1 微溝槽磨削加工實驗 67 5.1.1 磨削速度影響 68 5.1.2 磨削進給率影響 75 5.1.3 磨削深度影響 79 5.1.4 磨削誤差影響實驗 82 5.2 中頻振動輔助磨削加工實驗 84 5.2.1 磨削振動輔助PZT平台振幅影響 89 5.2.2 磨削振動輔助PZT平台頻率影響 93 5.3 磨削電流偵測與平台位置誤差訊號之回饋 97 5.3.1 輪刀磨削速度與平台電流回饋與位置誤差之影響 99 5.3.2 輪刀磨削進給速度與平台電流回饋與位置誤差之影響 100 5.3.3 輪刀磨削進給深度與平台電流回饋與位置誤差之影響 101 5.3.4 振動輔助磨削之平台電流回饋與位置誤差之振幅影響 102 5.3.5 振動輔助磨削之平台電流回饋與位置誤差之頻率影響 104 5.4 含硼聚晶鑽石磨輪磨耗探討 107 5.5 含硼聚晶鑽石刀具與單晶鑽石表面石墨化層探討 112 5.6 單晶鑽石陣列微溝磨削驗證 114 5.7 智能化微溝磨削實驗 118 第六章 結論與未來展望 127 6.1 結論 127 6.2 研究成果 128 6.3 研究貢獻 129 6.4 未來展望 130 參考文獻 131 附錄A 支撐座鑄件之退火過程 137 附錄B 各軸於1秒內不同轉數下平台位置之回饋誤差 138 附錄C 微溝槽之表面粗糙度量測(微溝輪廓皆以非等比例繪製) 145 附錄D 壓電平台之頻率與振幅訊號回饋 152 附錄E 最佳化支撐座結構設計 154

    1. Global production of rough diamonds from 2005 to 2017, https://www.statista.com/
    2. Crystal Market Research, Synthetic Diamond Market by Product, Type, Process Analysis and Application- Global Industry Analysis and Forecast to 2023, https://www.crystalmarketresearch.com/
    3. Ratnakala,半自動鑽石研磨工具機,http://ratnakala.com/
    4. ABICO,鑽石奈米研磨機,http://www.abico-rd.co.jp/
    5. COBORN,多功能七軸鑽石刀具研磨機,https://coborn.com/machines/rg/
    6. EWAG,短脈衝雷射加工機,https://www.ewag.com/
    7. WALTER,刀具微溝槽應用,https://www.walter-tools.com/
    8. S.T. Chen, S.J. Lin, Development of an extremely thin grinding-tool for grinding microgrooves in optical glass, Journal of Materials Processing Technology, pp. 1581-1589, 2011
    9. J. Fu, T.F. Zhu, M. Zhang, X. Zhang, F. Li, Z. Liu, G.A. Denu, Y.F. Wang, D. Zhao, G.Q. Shao, X. Chang, W. Wang, J. Zhang, H.X. Wang, J.J. Wang, X. Hou, Fabrication of single crystal diamond microchannels for micro-electromechanical systems. Diamond and Related Materials 80, pp. 64-68, 2017
    10. 宋健民,超硬材料,全華科技圖書股份有限公司,Ch2, 2000
    11. 陳偉恩,含硼聚晶鑽石材料最新研究之探討,碩士論文,華梵大學,機電工程學系,2010
    12. V.A. Sidorova, E.A. Ekimova, E.D. Bauerb, N.N. Mel’nikc, N.J. Currob, V. Fritschb, J.D. Thompsonb, S.M. Stishova, A.E. Alexenkod, B.V. Spitsynd, Superconductivity in boron-doped diamond, Diamond & Related Materials, Vol. 14, pp. 335-339, 2005
    13. S.T. Chen, C.H. Chang, Development of an ultrathin BD-PCD wheel-tool for in situ microgroove generation on NAK80 mold steel, Journal of Materials Processing Technology, Vol. 213, pp. 740-751, 2013
    14. M.T. Yan, T.C. Lin, Development of a Pulse Generator for Rough Cutting of Oil-based Micro Wire-EDM,18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII), Procedia CIRP 42, pp. 709-714, 2016
    15. Z.Q. Liang, X.B. Wang, Y.B. Wu, L.J. Xie, L. Jiao, W. Zhao, Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain, International Journal of Machine Tools & Manufacture 17, pp. 41-51, 2013
    16. W.X. Xu, L.C. Zhang, Ultrasonic vibration-assisted machining: principle, design and application, Advances in Manufacturing 3, pp. 173-192, 2015
    17. 三宅章仁,北風絢子,加藤聖子,村松正博,野口賢次,三宮一彦,中谷尊一,笹原弘之,旋削加工における送り方向への低周波振動の効果,2015 年度精密工学会秋季大会学術講演会講演論文集(JSPE),pp. 421-422, 2015
    18. 達利工具有限公司,電動鎚鑽(JEPSON H65),http://www.dltool.com/
    19. 林偉民,徐世傑,矢野健,藤本正和,呉勇波,鈴木浩文,樋口俊郎,低周波振動テーブルの試作とそれによる振動援用研磨効果,2012年度精密工学会秋季大会学術講演会講演論文集(JSPE),pp. 843-844, 2012
    20. 楊士緯,高頻振動輔助微線切割放電加工技術開發與高密度超高細長比精微陣列探針製作研究,國立臺灣師範大學,碩士,2013
    21. 石川憲一,諏訪部仁,畝田道雄,超音波と低周波の複合振動を利用したダイヤモンドコアドリルによる溝加工に関する研究,砥粒加工学会誌,Vol. 50,No.10,pp. 593-598, 2006
    22. 吳瑞華,白峰,盧琪,鑽石學教程,地質出版社,pp. 3-11, 2005
    23. 陳慧蓉,張煥正,半導體與醫學界的新星-鑽石,科學月刊496期,2011
    24. 郝兆印,賈攀,盧燦華,金剛石生長基礎,吉林大學出版社,2012
    25. 黃武良,天然鑽石的誕生,科學發展,493期,pp. 54-64, 2014
    26. 曾永華、陳柏穎、鄭宇明、游銘永,人造鑽石的合成及應用,科學發展,497期,pp. 60-67, 2014
    27. M. Weil, H. Tracy Hall, 88;Scientist Created Artificial Diamonds, http://www.washingtonpost.com, Wednesday, July 30, 2008
    28. 張紹和,金剛石與金剛石工具,中南大學出版社,pp. 46-69, 2005
    29. O.I. Leipunski, Synthetic diamonds, Usp Khim, Vol. 8, pp. 1519-1534, 1939
    30. Y.N. Palyanov, I.N. Kupriyanov, A.F. Khokhryakov, V.G. Ralchenko, Handbook of Crystal Growth (Second Edition), A volume in Handbook of Crystal Growth, pp. 671-713, 2015
    31. SubsTech, Synthetic diamonds, http://www.substech.com/, 2013
    32. P.K. Bachmann, D. Leers, H. Lydtin, Towards a general concept of diamond chemical vapour deposition, Diamond and Related Materials, Vol. 1, Issue 1, pp. 1-12, 1991
    33. 樊成,鑽石鑑定全書,布克文化,鑽石結晶學在切磨上的應用,pp. 35-36, 2014
    34. 維基百科,自由的百科全書,米勒指數,2005, https://zh.wikipedia.org/wiki/
    File:Indices_miller_plan_exemple_cube.png
    35. COBORN, PG4 Ultra-high precision, CNC grinding machine for single crystal diamond tool manufacture, Single Crystal Diamond Grinding, 2016
    36. 袁哲俊,精密和超精密加工技術,機械工業出版社,pp. 30-31, 2005
    37. 吳國梁,磨工實用技術手冊第2版,江蘇科學技術出版社,pp. 84-88, 2010
    38. 庄司克雄,超精密加工と非球面加工,NTS, pp. 7-11, 2004
    39. W. Lortz, Wear, A model of the cutting mechanism in grinding, Vol. 53, Issue 1, pp. 115-128, 1979
    40. I.D. Marinescu, W.B. Rowe, B. Dimitrov, H. Ohmori, Tribology of Abrasive Machining Processes, second ed. Elsevier, Waltham, pp. 207-208, 2013
    41. 陳順同,鏡面研削技術,超精密加工(2016版),Ch8, pp. 35-39, 2016
    42. 庄司克雄,研削加工の軌跡,精密工学会誌,Vol. 65, No.1, 1999
    43. APC International, Piezoelectric Ceramics: Principles and Applications, PIEZO THEORY, 2011
    44. AEROTECH, The Direct and Inverse Piezoelectric Effect, Piezo Engineering Tutorial, 2014
    45. APC International, Ltd, Precision positioning, First Steps towards Pizeoaction, pp. 19-22, 2010
    46. 社団法人日本塑性加工学会,研削加工への応用,超音波応用加工,森北出版株式会社,pp. 103-104, 2004
    47. Aerotech, Controller Configuration, A3200 Help (5.05.003), A3200 Software-Based Machine Controller, 2016, http://www.aerotech.com/
    48. 台中精機,立式綜合加工機,http://www.or.com.tw/uploads/product/OR_Vcenter_55_70.pdf
    49. 慶鴻機電工業股份有限公司,CNC線切割放電加工機,線切割機保養手冊,B1 edition, 2008
    50. 嘉昇電機,MD Series(MD20),http://www.castek.com.tw/
    51. Motors & Spindles BM-320, NAKANISHI, pp. 2-13, 2011
    52. iSpeed3 operation manual, NAKANISHI, pp. 6, 2011.
    53. 漢磊股份有限公司,工具顯微鏡,http://www.aixon.com.tw/
    54. JEOL USA Inc., Scanning Elextron Microscope JSM-6360, http://www.jeolusa.com/
    55. OLYMPUS,3D測量雷射共焦顯微鏡,http://www.olympus-ims.com/ en/metrology/ols4000/
    56. JASCO, Laser Raman Spectrometer (NRS-4100), https://jascoinc.com/
    57. FACT江信有限公司,含硼聚晶鑽石,http://www.factdiamond.com/
    58. 元祥金屬工業股份有限公司,黃銅線,http://www.yhm.com.tw
    59. 台灣鑽石工業股份有限公司,人造單晶鑽石,http://www.taiwandiamond.com/
    60. 江元壽,鑄鐵,機械材料II,台科大圖書股份有限公司,Ch8, pp. 5-33, 2015
    61. 大詠城機械股份有限公司,球墨鑄鐵(FCD400),http://www.wsmc.com.tw/
    62. 張宏輝,王孟君,李旭,鋁擠壓生產技術,中南大學出版社,pp. 12-13, 2013
    63. 維信鋁合金有限公司,鋁合金(Al 6061), http://www.wsal.com.tw/
    64. Aerotech, NANO motion technology-ANT130-XY Series, AVL125 Series Vertical Translation Stage (pp. 479-481), ADRS Series Mechanical-Bearing Rotary Stage (pp. 1-3), http://www.aerotech.com/
    65. Aerotech, QNPHD-L Single-Axis Piezo Nanopositioning Stage Hardware Manual, pp. 15, http://www.aerotech.com/
    66. 胡家驄,球墨鑄鐵,實用鑄鐵技術,遼寧科技出版社,Ch3, pp. 47-58, 2008
    67. 吳育儒,含硼聚晶鑽石輪刀開發與繞射階梯光柵模仁製作研究,國立臺灣師範大學,碩士,2012
    68. 顏木田,莊宗仁,線切割放電加工隅角粗加工軌跡補償策略之研究,國立臺灣大學台大工程學刊,第八十七期,pp. 109-117, 2003
    69. C. Johnston, A. Crossley, P.R. Chalker, I.M. Buckley-Golder, K. Kobashi, High temperature Raman studies of diamond thin films, Diamond and Related Materials, pp. 450-456, 1992
    70. J. Hodkiewicz, Characterizing Carbon Materials with Raman Spectroscopy, Thermo Fisher Scientific, Application Note: 51901, 2010, www.thermo.com
    71. Y. Chen, L.C. Zhang, Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism, International Journal of Machine Tools & Manufacture 47, pp.1615-1624, 2007
    72. S. Tolansky, Birefringence of Diamond, Nature, Vol. 211, pp. 158-160, 1966
    73. 王孚懋,任勇生,韓寶坤,轉子系統振動分析與動平衡,機械振動與噪聲分析基礎,國防工業出版社,Ch8, pp. 200-201, 2006
    74. R. Leach, The Abbe principle, Fundamental Principles of Engineering Nanometrology 2nd Edition, Ch3, pp. 48, 2014
    75. W. Grzesik, Tool Wear and Damage, Advanced Machining Processes of Metallic Materials (Second Edition), pp. 223-227, 2017
    76. 張智賢,桌上型雙主軸超精微CNC工具機開發與細胞鏡檢模仁製作研究,國立臺灣師範大學,碩士,2011

    下載圖示
    QR CODE