簡易檢索 / 詳目顯示

研究生: 李子翊
Zi-Yi Li
論文名稱: 利用理論計算探討電催化還原二氧化碳的反應機制
Electrocatalysis of carbon dioxide reduction mechanism by ruthenium polypyridyl complex: A computational mechanistic study
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 75
中文關鍵詞: 二氧化碳理論計算電催化反應機構
英文關鍵詞: CO2, computational, electrocatalysis, mechanism
論文種類: 學術論文
相關次數: 點閱:219下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RuII(bpy)(trpy)(CO), bpy = 2,2'-Bipyridine, trpy = 2,2':6',2”-terpyridine, 這個錯合物是少數能夠將二氧化碳直接還原成甲醇的有機錯金屬錯合物,這個錯合物曾經被報導可以在通入-1.5V的電壓環境下,生成甲醇和碳碳鍵生成的產物,利用此催化劑還原二氧化碳的產物包括了CO、HCOOH、CH3OH、HC(O)H、H(O)CCOOH以及HOCH2COOH,而第一個推測這個催化反應的反應機制是Tanaka,但是這個催化反應的各種中間產物的詳細資訊,不管是在實驗或是理論計算中都還是不清楚的。
    在目前的研究利用理論計算的方法來分析這個反應機制,包括利用還原電位,pKa以及自由能來更完善Tanaka所預測的反應機制,並探討其反應的可行性。

    關鍵字: 二氧化碳,理論計算,電催化,反應機構

    RuII(bpy)(trpy)(CO), bpy = 2,2'-Bipyridine, trpy = 2,2':6',2”-terpyridine, complex is one of the few organometallic complexes to be able to generate methanol directly from carbon dioxide. This complex was reported to produce methanol and C2-product with applying -1.5V vs. NHE. The products generated by this reductive catalysis include CO, HCOOH, CH3OH, HC(O)H, H(O)CCOOH, and HOCH2COOH. The catalytic mechanism was postulated first by Tanaka and coworker. However, the details regarding the various intermediates along the catalytic reaction coordinate are still not clearly understood from experimental and theoretical perspectives.
    In the present study, we have carried out a comprehensive first-principle theoretical analysis on the detailed mechanism. Each potential electrochemical step is calculated by thermodynamic cycle method coupled with continuum solvation model. The predicted electronic assignment, redox potential, pKa, as well as the electronic structure for each intermediate will be provided.

    Key point : CO2, computational, electrocatalysis and mechanism

    目錄 II 表目錄 IV 圖目錄 V 中文摘要 VII 英文摘要 VIII 第一章 緒論 1 1-1 前言 1 1-2 二氧化碳的勻相催化反應 3 1-2-1 氧化耦合與二氧化碳嵌入催化反應 3 1-2-2 金屬氫化物(metal hydride)催化還原反應 5 1-2-3 光催化與電催化還原反應 6 1-3 質子耦合電子轉移(proton-coupled electron transfer) 9 1-4 Koji Tanaka 一系列對CO2還原的研究 11 第二章 計算原理 16 2-1 量子力學 16 2-2 理論與方法 17 2-2-1 分子力學 17 2-2-2 初始法(abinitio) 18 2-2-3 半經驗法 19 2-2-4 密度泛函理論 19 2-2-5 基底函數 20 2-3 計算方法 22 2-3-1 單點能量 22 2-3-2 幾何優化 22 2-3-3 振動頻率 24 2-3-4 溶劑模型 24 2-3-5 在溶液中自由能、電位與pKa的計算 26 2-3-6 本篇使用的計算方法 29 第三章 實驗結果與討論 30 3-1 前言 30 3-2 計算結果的前置作業 31 3-3 Ru(tpy)(bpy)CO 與 Ru(bpy)2(CO)2 的比較 33 3-4 [Ru(tpy)(bpy)CO]2+的反應 35 3-5 [Ru(tpy)(bpy)CHO]n+(n=0,1)的反應 43 3-6 [Ru(tpy)(bpy)CH2OH]n+的反應 55 3-7 [Ru(tpy)(bpy)OC2H5]與[Ru(tpy)(bpy)HOC2H5]的反應 60 3-8 [Ru(tpy)(bpy)CO2]n+與[Ru(tpy)(bpy)COOH]n+(n=0,1,2)的反應 62 第四章 結論 71 參考文獻 73

    (1) Sakakura., T.; Choi, J.-C.; Yasuda., H. Chem. Rev. 2007, 107, 2365.
    (2) Yasuda, H.; Bruckmeier, C.; Riege, B.; A, W.; Herrmann; Kuhn, F. E.
    Angew. Chem. Int. Ed. 2011, 50, 8510.
    (3) Roy, L.; Zimmerman, P. M.; Paul, A. Chem.—Eur. J. 2011, 17, 435.
    (4) Menard, G.; Stephan, D. W. J. J. Am. Chem. Soc. 2010, 132, 1796.
    (5) Skata, T.; Kawai, T. Energy Resources through Photochemistry and
    Catalysis 1st ed.; M. GRATZEL 1983; Vol. 331.
    (6) Skata, T.; Kawai, T. Energy Resources through Photochemistry and
    Catalysis 1st ed.; M. GRATZEL 1983; Vol. 507.
    (7) Savéant, J.-M. Chem. Rev. 2008, 108, 2348.
    (8) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev
    2009, 38, 89.
    (9) Bernhard Rieger; Kuhn, F. E. Angew. Chem. Int. Ed. 2011, 50, 8510.
    (10) Creutz, C. J. Am. Chem. Soc. 2007, 129, 10108.
    (11) MEYER, G. J.; FUJITA, E. Acc. Chem. Res. 2009, 42, 1983.
    (12) Tanaka, K.; Ooyama, D. coordination chemistry review. 2002, 226, 211.
    (13) Tanaka, K. Chemistry Letters 1993, 955.
    (14) Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004.
    (15) Mayer, J. M. Ann. Rev. Phys. Chem 2004, 55, 363.
    (16) Orna, M. V.; Orna, M. V. Electrochemistry, past and present., 1989.
    (17) Ishida, H.; Tanaka, K.; Tanaka, T. Organmetallics. 1987, 6, 181.
    (18) Tanaka, K.; Nagao, H.; Mizukawa, T. Inorg. Chem. 1994, 33, 3415.
    (19) Schläfer, H. L.; Gliemann, G. In "Basic Principles of Ligand Field Theory"
    Wiley Interscience. New York, 1969.
    (20) Tolman, C. A. Chem. Soc. Rev. 1972, 1, 337.
    (21) Cramer, C. J. Essentials of Computational Chemistry West Sussex, England ;
    New York, 2002.
    (22) Levine, I. N. Quantum Chemistry; 3th ed. Brooklyn, New York, 1970.
    (23) Lewars, E. G. Computational Chemistry Introduction to the Theory and
    Applications; 2th ed. Peterborough Ontario Canada, 2011.
    (24) Lewars, E. Computational Chemistry:Introduction to the Theory and
    Applications of Molecular and Quantum Mechanics Boston, 2004.

    (25) Young, D. Computational Chemistry:A Practical Guide for Applying
    Techniques to Real World Problems; 2th ed. New York, 2001.
    (26) Rode, B. M.; Hofer, T. S.; Kugler, M. D. The Basics of Theoretical and
    Computational Chemistry Weinheim, 2007.
    (27) Parr, R. C.; Yang, W. Annu. Rev. Phys. Chern. 1995, 46, 701.
    (28) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
    (29) Castro, A.; Marques, M. A. L.; Rubio, A. J. Chem. Phys. 2004, 121, 3425.
    (30) Leach, A. R. Molecular Modelling:Principles and Applications; 2th ed.
    Harlow, England, 2001.
    (31) Hartree, D. R. Proc. Cambridge Phil. Soc. 1928, 24, 89.
    (32) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
    (33) Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem. 1975, 9, 229.
    (34) Shavitt, I. Mol. Phys. 1998, 94, 3.
    (35) Crawford, T. D.; III, H. F. S. Rev. Comput. Chem 2000, 14, 33.
    (36) J. A. Pople , G. A. S. J. Chem. Phys. 1966, 44, 3289.
    (37) Dannenberg, J. J.; Evleth, E. M. Int. J. Quant. Chem. 1992, 44, 869.
    (38) Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209.
    (39) Stewart, J. J. P. J. Comp. Chem. 1991, 12, 320.
    (40) Stewart, J. J. P. J. Comp. Chem. 1992, 10, 221.
    (41) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, B864.
    (42) Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111,
    10439.
    (43) Ullrich, C. A.; Kohn, W. Phys. Rev. Lett. 2001, 87, 093001.
    (44) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys.
    Chem. 1994, 98, 11623.
    (45) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
    (46) Slater, J. C. Phys. Rev. 1930, 36, 57.
    (47) Bouferguene, A.; Fares, M.; Hoggan, P. E. Int. J. Quant. Chem. 1996, 57,
    801.
    (48) Gill, P. M. W. Adv Quantum Chem 1994, 25, 141.
    (49) Boys, S. F. Proc. R. Soc. London. Ser. A 1950, 200, 542.
    (50) Gill, P. M. W.; Pople, J. A. Int. J. Quant. Chem. 1991, 40, 753.
    (51) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
    (52) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
    (53) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
    (54) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029.
    (55) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure
    Methods: A Guide to Using Gaissian; Second Edition ed. Pittsburgh, PA.
    (56) Foresman, J. B. Exploring Chemistry with Electronic Structure Methods; 2th
    ed. Pittsburgh, 2000.
    (57) Tsai, M.-K.; Rochford, J.; Polyansky, D. E.; Wada, T.; Tanaka, K.; Fujita, E.;
    Muckerman, J. T. Inorganic Chemistry 2009, 48, 4372.
    (58) Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.;
    Earhart, A. D.; Coe, J. V.; Tuttle, T. R. J. Phys. Chem. A 1998, 102, 7787.
    (59) Sadlej-Sosnowska, N. Theor. Chem. Acc. 2007, 118, 281.
    (60) Marenich, A. V.; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J.
    Chem. Theory Comput. 2007, 3, 2011.
    (61) Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. C
    2007, 111, 5783.
    (62) Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1991, 30, 86.
    (63) Tanaka, K. Organmetallics. 1995, 14, 5093.
    (64) Koopmans, T. In "Über die Zuordnung von Wellenfunktionen und
    Eigenwerten zu den Einzelnen Elektronen Eines Atoms". Physica (Elsevier)
    1934; Vol. 1 p104.

    下載圖示
    QR CODE