簡易檢索 / 詳目顯示

研究生: 陳冠廷
Kuan-Ting Chen
論文名稱: 阿拉伯芥TOC33基因表現的調節機制研究
Regulatory mechanism of TOC33 expression in Arabidopsis
指導教授: 孫智雯
Sun, Chih-Wen
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 37
中文關鍵詞: TOC33TOC34CIA2CIL植物暫時性基因轉殖qRT-PCR
英文關鍵詞: TOC33, TOC34, CIA2, CIL, plant transient assays, qRT-PCR
論文種類: 學術論文
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物葉綠體蛋白質主要是由細胞核中的基因轉錄轉譯後,透過轉運蛋白機組(TOC/TIC complex)送至葉綠體內。TOC蛋白位在葉綠體外膜上,負責辨識及運送蛋白質。在阿拉伯芥的研究中,TOC33及TOC34是同源蛋白,但TOC33負責辨識及協助光合作用相關蛋白的運輸;TOC34則參與辨識及運送一些維持葉綠體基本功能的蛋白。根據我們之前的基因微陣列及生化實驗結果,發現CIA2 (是一個細胞核內的轉錄因子)會調節TOC33基因表現但不會影響TOC34基因表現。而CIL是一個在阿拉伯芥中與CIA2胺基酸有65%相同的同源蛋白。為了瞭解表現TOC33基因的調節機制,啟動子刪除及植物暫時性基因轉殖實驗先用來分析TOC33啟動子上的轉錄關鍵序列,分析報導基因表現的結果發現TOC33轉錄起始位點前-810至-710及-710至-411之間分別可能會促進及抑制基因的表現量。接著透過生物資訊網站PLACE及AGRIS來分析比對這些關鍵序列是否有已知的順式作用元素及蛋白結合位,預測結果顯示TOC33啟動子序列上存在許多可能的順式作用元素,其中TOC33關鍵序列會受到光線或缺水等環境因子調節。此外,根據DIURNAL基因資料庫及反轉錄聚合酶連鎖反應實驗結果,發現TOC33、CIA2及CIL在白光下具有規律性的表現。因此,我們也利用不同光源處理野生型及突變株植物,並以qRT-PCR來分析TOC33基因的表現規律性或表現量是否會直接或間接受到CIA2及CIL調節。結果顯示CIA2及CIL不會調節TOC33基因的表現規律性,但會增加TOC33基因的表現量。此外,TOC33基因在單獨紅光處理與白光處理下呈現相同的表現量,暗示光受體光敏素亦參與調節TOC33基因的表現。

    Most of chloroplastic proteins are encoded by nuclear genome and then imported into chloroplast by TOC/TIC complex. TOC proteins, located at outer membrane of chloroplast, are responsive for recognizing and importing chloroplastic proteins. In Arabidopsis, TOC33 and TOC34 are homologous proteins. Nevertheless, they are involved in transporting photosynthetic proteins and housekeeping proteins, respectively. According to our previous microarray and biochemical analyses, chloroplast import apparatus 2 (CIA2, a nuclear transcription factor) can regulate the expression yield of TOC33 but not TOC34. Besides, CIA2-like (CIL) is a homologous protein of CIA2 in Arabidopsis which shares 65% identity. To understand how the TOC33 expression is regulated during gene transcription, promoter deletion and plant transient assays are used to characterize the critical sequences on TOC33 promoter. So far, the reporter activity assay indicate that TOC33 has one positive and two negative regulatory sequence, located on -810 to -710 and -710 to -411 respectively. Then, we analyze these critical sequences by PLACE and AGRIS database to find the cis-acting elements and the protein binding sites. The results indicate these critical sequences might be light-regulated or dehydration-regulated. Moreover, based on DIURNAL database and our reverse-transcription PCR (RT-PCR) results, TOC33, CIA2 and CIL express rhythmically in white light. Therefore, the rhythmic expression pattern and expression yields of TOC33 in wild-type and cia2-related mutant plants under different light treatments are further verified by real-time quantitative RT-PCR (qRT-PCR). The results illustrate that CIA2 and CIL increase the expression yield of TOC33 but has little effect to regulate the rhythmic pattern of TOC33. Furthermore, similar expression level of TOC33 under red light and white light treatment implies that phytochrome might be involved in the regulation of TOC33 expression.

    中文摘要…………………………………………………………………...……………..……...II 英文摘要…………………………………………………………...….……………………..….III 緒論………………………………………………………………...………………………..…....1 研究材料與方法………………………………………………...……………………………..…3 一、 植物材料……………..……………………………………………………………...……3 二、 植物暫時性基因轉殖分析…………………………..…………………………..……….3 1. 報導基因質體的製備………………………………………………………………...…..3 2. 轉殖植物葉片樣品準備………………………………………………………………... .4 3. 質體殖入阿拉伯芥葉片……………………………………………………...………... ..4 4. 報導基因活性分析………………………………………………….…………….……. .4 三、 基因序列分析…………………..………………………………………………………...5 四、 光照處理及基因表現量分析……………………..…………………………………..….5 1. 光線環境因子處理……………………………………………………………………... .5 2. RNA萃取………………………………………………………………………………. ..6 3. 即時定量反轉錄PCR………………………………………………………………….. ..6 4. cDNA絕對定量…………………………………………………………………..……. ..6 結果………………………………………………………...………........................ ...... .............7 討論……………………………………………………………...……........................................10 參考文獻…………………………………………………………………...................................12 表格與圖片……………………………………………………………………...........................15 表一 專一引子對序列資料………………………………………………………………...15 圖一 建構TOC33啟動子序列刪減之質體示意圖………………………………………..16 圖二 比較不同TOC33基因啟動子片段驅動報導基因之相對活性……………………..17 圖三 週期性光處理對於基因規律性表現與表現量的影響……………………...………18 圖四 連續性光處理對於基因規律性表現與表現量的影響…………………...………....19 圖五 比較Col.及cia2/cil突變植株在週期性白光處理下之基因表現規律性與表現量..20 圖六 比較Col.及cia2/cil突變植株在連續性白光處理下之基因表現規律性與表現量..21 附錄………………………………………………………………………………………....…...22 附錄一 以PALCE資料庫分析CAE1之調控序列………………………………………..22 附錄二 以PALCE資料庫分析CAE2之調控序列………………………………………..23 附錄三 以PALCE資料庫分析CAE3之調控序列………………………………………..25 附錄四 DIURNAL資料庫不同實驗條件狀況(12L/12D)之列表…….………….….........27 附錄五 以DIURNAL資料庫分析TOC33/CIA2/CIL/TOC34基因表現模式…………….28 附錄六 以DIURNAL資料庫分析CCA1/TOC1/CAB3基因表現模式………….…….....32 附錄七 週期性與連續性光照下CCA1/TOC1/CAB3的基因絕對表現量………………...36 附錄八 比較Col.及cia2/cil突變植株中CCA1/TOC1/CAB3的基因絕對表現量……….37

    1. Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15:63-78.
    2. Agarwal M., Hao Y., Kapoor A., Dong C.H., Fujii H., Zheng X., Zhu J.K. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem. 281:37636-45.
    3. Agne, B., and Kessler, F. (2009). Protein transport in organelles: The Toc complex way of preprotein import. FEBS J. 276: 1156–1165.
    4. Chan C.S., Guo L., Shih M.C. (2001). Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol. 2001 46:131-41.
    5. Chang C.T. (2012). Regulatory mechanism of CIA2/CIL gene expression in Arabidopsis. Master thesis.
    6. Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., Budworth P.R., Tao Y., Xie Z., Chen X., Lam S., Kreps J.A., Harper J.F., Si-Ammour A., Mauch-Mani B., Heinlein M., Kobayashi K., Hohn T., Dangl J.L., Wang X., Zhu T. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell. 14:559-74.
    7. Chomczynski, P., and Sacchi, N. (1987). Single Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal Biochem.162:156-159.
    8. Elmayan T. and Tepfer M. (1995). Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res. 4:388-96.
    9. Hartmann U., Sagasser M., Mehrtens F., Stracke R., Weisshaar B. (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol. 57:155-71.
    10. Higo K., Ugawa Y., Iwamoto M., and Korenaga T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Research 27:297-300.
    11. Jarvis, P., Chen, L.J., Li, H., Peto, C.A., Fankhauser, C., Chory, J. (1998). An Arabidopsis mutant defective in the plastid general protein import apparatus. Science. 282: 100-103.
    12. Jefferson, R.A. (1987). Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.
    13. Kessler, F., and Schnell, D. (2009). Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Bio. 21:494–500.
    14. Kusnetsov V., Landsberger M., Meurer J., Oelmuller R. (1999). The Assembly of the CAAT-box Binding Complex at a Photosynthesis Gene Promoter Is Regulated by Light, Cytokinin, and the Stage of the Plastids. J. Biol. Chem. 274:36009-14.
    15. Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D.L., Garcia-Hernandez, M., Karthikeyan, A.S., Lee, C.H., Nelson, W.D., Ploetz, L., Singh, S., Wensel, A., and Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 40:1202-1210.
    16. Mockler, T.C., Michael, T.P., Priest, H.D., Shen, R., Sullivan, C.M., Givan, S.A., McEntee, C., Kay, S.A., Chory, J. (2007). The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol. 72: 353-363.
    17. Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
    18. Rose A., Meier I., Wienand U. (1999). The tamato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins. Plant J 20: 641-652.
    19. Rossig C., Reinbothe C., Gray J., Valdes O., Wettstein D., Reinbothe S. (2013). Three proteins mediate import of transit sequence-less precursors into the inner envelope of chloroplasts in Arabidopsis thaliana. PNAS 110:19962-19967.
    20. Shi L. X., Theg S. M. (2013). The chloroplast protein import system: From algae to trees. Biochimica et Biophysica Acta 1833:314–331.
    21. Shirsat A., Wilford N., Croy R., Boulter D.(1989). Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet. 215:326-31.
    22. Sun, C.W., Chen, L.J., Lin, L.C., Li, H.M. (2001). Leaf-specific up-regulation of chloroplast translocon genes by a CCT motif–containing protein, CIA2. Plant Cell 13: 2053–2061.
    23. Sun, C.W., Huang, Y.C., Chang, H.Y. (2009). CIA2 coordinately up-regulates protein import and synthesis in leaf chloroplasts. Plant Physiol. 150: 879-888.
    24. Tatematsu K., Ward S., Leyser O., Kamiya Y., Nambara E. (2005). Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138:757-66.
    25. Thum K.E., Kim M., Morishige D.T., Eibl C., Koop H.U., Mullet J.E. (2001). Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol. 47:353-66.
    26. Tsai J.Y., Chu C.C., Yeh Y.H., Chen L.J., Li H.M., Hsiao C.D. (2013). Structural characterizations of the chloroplast translocon protein Tic110. The Plant Journal 75:847–857
    27. Wang Z.Y., Kenigsbuch D., Sun L., Harel E., Ong M.S., Tobin E.M. (1997). A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell. 9:491-507.
    28. Yilmaz A., Mejia-Guerra M.K., Kurz K., Liang X., Welch L., Grotewold E. (2011). AGRIS: Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Research 39:1118-1122.

    QR CODE