研究生: |
張亦甫 Yi-Fu Chang |
---|---|
論文名稱: |
過渡金屬催化劑對乙醇蒸氣重組與氧化蒸氣重組反應之研究 The study of ethanol steam reforming and oxidative steam reforming on transition-metal catalysts |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 乙醇重組 、過渡金屬催化劑 、蒸氣重組 、氧化蒸氣重組 、氫能 |
英文關鍵詞: | ethanol reforming, transition-metal catalysts, steam reforming, oxidative steam reforming, hydrogen fuel |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以 Polyvinylpyrrolidone (PVP)法,來製備以Al2O3為支撐物的Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pt、Au金屬觸媒並利用X-ray 繞射儀(XRD)、能量散射光譜儀(EDS)來分析觸媒特性,應用在乙醇的蒸氣重組反應(Steam reforming)與氧化蒸氣重組(Oxidative steam reforming)的催化,而催化反應在常壓及設定溫度(400℃-600℃)的實驗條件中於石英固定反應床進行。反應產物利用in situ之方式,有系統的以氣相層析儀(Gas Chromatography)進行分析。
實驗結果發現氧化蒸氣重組反應的乙醇轉換效率與氫氣產率在所有實驗設定的溫度範圍中都比蒸氣重組反應來得高,而改變Gas hourly space velocity (GHSV)對反應的影響很小。在催化觸媒中Ru、Rh、Ir有最好的乙醇轉氫能力及最高的氫氣產率,而Cu、Ag、Au 則是有最佳的乙醇氧化能力。
另外可以發現Co、Ni、Pd、Pt 在乙醇催化過程中擁有最高的乙烯選擇率可推斷是走乙醇脫水的催化路徑。將實驗配合之前所做的電腦理論計算的結果可以歸納出Ru、Rh、Ir之所以有最高的氫氣產率是因為它們擁有最好的碳-碳鍵結斷裂能力讓乙醇能完全分解;Cu、Ag、Au 有最佳的乙醇氧化能力是歸因於它們的氧化過程中鍵形成的能障最低,Co、Ni、Pd、Pt則是在其表面上有相對較低的碳氧鍵解離能障。
In the current research,catalysts of Co、Ni、Cu、Ru、Rh、Pd、Ag、Ir、Pt、Au supported on Al2O3 have been prepared by the Polyvinylpyrrolidone (PVP) method and characterized by XRD,EDS. The experiments of ethanol steam reforming (SRE) and oxidative steam reforming (OSRE) of the catalysts have been carried out in the quartz fixed-bed reactor at the temperature range of 400℃- 600℃ in the ambient pressure. The products have been systematically analyzed by in situ Gas Chromatography (GC) to elucidate the mechanism.
The result shows that OSRE has a better conversion efficiency and hydrogen yield than SR in all the temperature range, while Gas hourly space velocity (GHSV) had limited effect on the reaction. Comparing the activity of the catalysts, Ru, Rh and Ir show the best performance with the highest H2 yield; on the other hand, Cu, Ag and Au are good for ethanol oxidation.
Furthermore, the other metal catalysts of Co, Ni, Pd and Pt show higher selectivity of C2H4 and might follow the dehydration process. Comparison with previous computational work,the higher H2 yield of Ru, Rh and Ir can 4 be attributed to their lower C-C bond breaking step and results fully decomposition of ethanol. The excellent oxidative ability of Cu, Ag and Au corresponds to the lower bond formation barrier in the oxidation process. Finally, the dehydration process on Co, Ni, Pd and Pt are related to the lower C-O dissociation barriers on these surfaces.
1. Denis, A.; Grzegorczyk, W.; Gac, W.; Machocki, A., Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today 2008, 137, 453–459.
2. Assabumrungrata, S.; Pavarajarna, V.; Charojrochkulb, S.; Laosiripojanac, N., Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol. Chemical Engineering Science 2004, 59, 6015 – 6020.
3. Vaidya, P. D.; Rodrigues, A. E., Glycerol Reforming for Hydrogen Production:
A Review. Chem. Eng. Technol. 2009, 32, 1463–1469.
4. Zhang, B.; Tang, X.; Li, Y.; Xu, Y.; Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy 2007, 32, 2367 – 2373.
5. Palmeri, N.; Chiodo, V.; Freni, S.; Frusteri, F.; Bart, J. C. J.; Cavallaro, S., Hydrogen from oxygenated solvents by steam reforming on Ni/Al2O3 catalyst. international journal of hydrogen energy 2008, 33, 6 6 2 7 – 6 6 3 4.
6. Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy & Fuels 2005, 19, 2098-2106.
7. Rabenstein, G.; Hacker, V., Hydrogen for fuel cells from ethanol by 134 steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources 2008, 185, 1293–1304.
8. Ni, M.; Leung, D. Y. C.; Leung, M. K. H., Areviewon reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy 2007, 32, 3238 – 3247.
9. Haryanto, A.; Fernando, S. D.; To, S. D. F.; Steele, P. H.; Pordesimo, L.; Adhikari, S., Hydrogen Production through the Water-Gas Shift Reaction:Thermodynamic Equilibrium versus Experimental Results over Supported Ni Catalysts. Energy & Fuels 2009, 23, 3097–3102.
10. Akdim, O.; Cai, W.; Fierro, V.; Provendier, H. l. n.; Veen, A. v.; Shen, W.; Mirodatos, C., Oxidative Steam Reforming of Ethanol over Ni–Cu/SiO2,Rh/Al2O3 and Ir/CeO2: Effect of Metal and Support on Reaction Mechanism. Top Catal 2008, 51, 22–38.
11. Breen, J. P.; Burch, R.; Coleman, H. M., Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Applied Catalysis B 2002, 39, 65–74.
12. Song, H.; Zhang, L.; Watson, R. B.; Braden, D.; Ozkan, U. S., Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today 2007, 129, 346–354.
13. Batista, M. S.; Santos, R. K. S.; Assaf, E. M.; b, J. M. A.; Ticianelli, E. A., High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources 2004, 134, 27–32.
14. Liberatori, J. W. C.; Ribeiro, R. U.; Zanchet, D.; Noronha, F. B.; Bueno, J. M. C., Steam reforming of ethanol on supported nickel catalysts. Applied Catalysis A 2007, 327, 197–204.
15. Bergamaschi, V. S.; Carvalho, F. M. S., Hydrogen Production by Ethanol Steam Reforming Over Cu and Ni Catalysts Supported on ZrO2 and Al2O3 Microspheres. Materials Science Forum 2008, 591-593, 734-739.
16. Erdo˝helyi, A. s.; Rasko´, J. n.; Kecske´s, T.; To´th, M.; Do¨mo¨k, M. r.; a, K. l. B. n., Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catalysis Today 2006, 116, 367–376.
17. Salge, J. R.; Deluga, G. A.; Schmidt, L. D., Catalytic partial oxidation of ethanol over noble metal catalysts. Journal of Catalysis 2005, 235, 69–78.
18. Byrd, A. J.; Pant, K. K.; Gupta, R. B., Hydrogen Production from Ethanol by Reforming in Supercritical Water Using Ru/Al2O3 Catalyst. Energy & Fuels 2007, 21, 3541–3547.
19. Chen, H.; HaoYu; Tang, Y.; Pan, M.; Yang, G.; Peng, F.; Wang, H.; JianYang, Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. Journal of Natural Gas Chemistry 2009, 18, 191–198.
20. Sheng, P.-Y.; Yee, A.; Bowmaker, G. A.; Idriss, H., H2 Production from Ethanol over Rh–Pt/CeO2 Catalysts: The Role of Rh for the Efficient Dissociation of the Carbon–Carbon Bond. Journal of Catalysis 2002, 208, 393–403.
21. Kugai, J.; Velu, S.; Song, C., Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters 2005, 101, 3–4.
22. Sánchez-Sánchez, M. C.; Navarro, R. M.; Fierro, J. L. G., Ethanol steam reforming overNi/MxOy–Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 2007, 32, 1462 – 1471.
23. Sheng, P. Y.; Idriss, H., Ethanol reactions over Au–Rh/CeO2 catalysts. Total decomposition and H2 formation. American Vacuum Society 2004.
24. Sheng, P.-Y.; Bowmaker, G. A.; Idriss, H., The Reactions of Ethanol over Au/CeO2. Applied Catalysis A 2004, 261, 171–181.
25. Navarro, R. M.; lvarez-Galva´n, M. C. A.; Sa´nchez-Sa´nchez, M. C.; Rosa, F.; Fierro, J. L. G., Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La. Applied Catalysis B 2005, 55, 229–241. 137
26. Jia, J.; Zhou, J.; Zhang, C.; Yuan, Z.; Wang, S.; Cao, L.; Wang, S., Preparation and characterization of Ir-based catalysts on metallic supports for high-temperature steam reforming of methanol. Applied Catalysis A 2008, 341, 1–7.
27. Profeti, L. P. R.; Ticianelli, E. A.; Assaf, E. M., Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel 2008, 87, 2076–2081.
28. M.Yan; Luo, Y.; Camillone, N.; Osgood, R. M., Reaction of H2S with Si(100). Journal of Physical Chemistry B 2000.
29. Mui, C.; Senosiain, J. P.; Musgrave, C. B., Initial Oxidation and Hydroxylation of the Ge(100)-2x1 Surface by Water and Hydrogen Peroxide. Langmuir 2004, 20, 7604-7609.
30. Houssa, M.; Nelis, D.; Hellin, D.; Pourtois, G.; Conard, T.; Paredis, K.; Vanormelingen, K.; Vantomme, A.; van Bael, M. K.; Mullens, J.; Caymax, M.; Meuris, M.; Heyns, M. M., H2S exposure of a (100)Ge surface: Evidences for a (2×1) electrically passivated surface. Applied Physics Letters 2007, 90, (22).