研究生: |
鄔毅愷 Wu, Yi-Kai |
---|---|
論文名稱: |
副熱帶東北太平洋海溫年際及年代際變化以及其對亞洲-太平洋之影響 Interannual and Interdecadal variations of Subtropical Eastern North Pacific SST and its Impact on Pacific-Asia Climate |
指導教授: |
陳正達
Chen, Cheng-Ta 洪志誠 Hong, Chi-Cherng |
學位類別: |
博士 Doctor |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 東北太平洋海溫 、年際 、年代際 、聖嬰現象 、太平洋經向模態 、全球暖化 |
英文關鍵詞: | subtropical Eastern North Pacific SST, Interannual, Interdecadal, ENSO, PMM, Global Warming |
DOI URL: | http://doi.org/10.6345/NTNU201901026 |
論文種類: | 學術論文 |
相關次數: | 點閱:224 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
觀測發現,副熱帶東北太平洋的暖海溫從2013年開始出現持續增暖的現象,近期研究發現此暖海溫對短期天氣或長期氣候變異颱風都有顯著的影響。然而相較於赤道東太平洋海溫, 有關副熱帶東北太平洋海溫的時空特徵之相關研究仍相當有限. 本研究主要探討副熱帶東北太平洋的特徵, 增暖的物理機制, 以及對天氣與氣候的可能影響
分析顯示,此區域之海溫變異與太平洋經向模態密切相關。除此之外,亦受到暖化趨勢的影響(約貢獻15%之海溫變異)。小波分析進一步發現此區域海溫包含了年際及年代際變化。在年際尺度,副熱帶東北太平洋海溫增暖同時,赤道太平洋亦同時有一類似聖嬰結構之海溫增暖現象。而在年代際尺度,太平洋年代際震盪、北太平洋環流震盪以及大西洋多重年代際震盪對此區域海溫變化皆有顯著的影響。
海洋混合層熱量收支得知,此海溫近期之增暖,主要透過風-蒸發-海溫(wind-evaporation-SST, WES) 之正回饋機制。除此之外,本研究也藉由兩個個案,討論此海溫對聖嬰現象以及西北太平洋颱風活動之影響。
The subtropical Eastern North Pacific (SENP) sea surface temperature (SST) is persistent warming from 2013. Notably, the impact of the SENP SST on weather and climate are also significant and demonstrated in several recent studies. Compare to the equatorial eastern Pacific SST, the characteristics of SENP SST are less discussed. In this study, we aired to diagnose the characteristics, warming mechanism, and possible impact of SENP SST.
It reveals that the SENP SST is associated with Pacific meridional mode (PMM) and global warming. The warming trend contributes approximately 15% to the variability of SENP SST. Wavelet analysis further shows that SENP SST exhibits the interannual and interdecadal variations. The regression analysis shows that SENP and ENSO-like (El Niño–Southern oscillation) SST warm simultaneously in the interannual time scale. The Pacific decadal oscillation (PDO), North Pacific gyre oscillation (NPGO), Atlantic multi-decadal oscillation (AMO) have an impact on SENP SST variation in the interdecadal time scale.
The mixed layer heat budget analysis suggested that the SENP SST is warming through wind–evaporation–SST mechanism. Furthermore, the impact of SENP SST on ENSO and tropical cyclone (TC) activity are also showed in the two case studies, which hinders the development of 2014 El Niño and enhances the 2016 TC activity in western North Pacific.
Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N. C., & Scott, J. D. (2002). The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. Journal of Climate, 15(16), 2205–2231.
Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161.
Behringer, D. W., & Xue, Y. (2004, January). Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. In Proc. Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. Seattle, Wash: AMS 84th Annual Meeting, Washington State Convention and Trade Center.
Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M., & Vialard, J. (2014). ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dynamics, 42(7–8), 1999–2018.
Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly weather review, 97(3), 163–172.
Chang, P., & Philander, S. G. (1994). A coupled ocean–atmosphere instability of relevance to the seasonal cycle. Journal of the atmospheric sciences, 51(24), 3627–3648.
Chang, P., Zhang, L., Saravanan, R., Vimont, D. J., Chiang, J. C., Ji, L., ... & Tippett, M. K. (2007). Pacific meridional mode and El Niño—Southern oscillation. Geophysical Research Letters, 34(16).
Chen, L., & Yu, Y. (2014). Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. In Flexible Global Ocean-Atmosphere-Land System Model (pp. 189–197). Springer, Berlin, Heidelberg.
Chen, L., Yu, Y., & Sun, D. Z. (2013). Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? Journal of Climate, 26(14), 4947–4961.
Chen, L., Li, T., & Yu, Y. (2015). Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. Journal of Climate, 28(8), 3250–3274.
Chen, L., Li, T., Behera, S. K., & Doi, T. (2016a). Distinctive precursory air–sea signals between regular and super El Niños. Advances in Atmospheric Sciences, 33(8), 996–1004.
Chen, L., Yu, Y., & Zheng, W. (2016b). Improved ENSO simulation from climate system model FGOALS-g1. 0 to FGOALS-g2. Climate dynamics, 47(7–8), 2617–2634.
Chen, L., Li, T., Yu, Y., & Behera, S. K. (2017). A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dynamics, 49(11–12), 3799–3811.
Chia, H. H., & Ropelewski, C. F. (2002). The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. Journal of Climate, 15(20), 2934–2944.
Chiang, J. C., & Vimont, D. J. (2004). Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. Journal of Climate, 17(21), 4143–4158.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... & Bechtold, P. (2011). The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656), 553–597.
Di Lorenzo, E., Liguori, G., Schneider, N., Furtado, J. C., Anderson, B. T., & Alexander, M. A. (2015). ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophysical Research Letters, 42(21), 9440–9448.
Di Lorenzo, E., Schneider, N., Cobb, K. M., Franks, P. J. S., Chhak, K., Miller, A. J., ... & Powell, T. M. (2008). North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters, 35(8).
Enfield, D. B., Mestas Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophysical Research Letters, 28(10), 2077–2080.
Ferrel, W. (1856). An essay on the winds and currents of ocean. Nashville journal of medicine and surgery, 11.
Hadley, G. (1735). VI. Concerning the cause of the general trade-winds. Philosophical Transactions of the Royal Society of London, 39(437), 58–62.
Hendon, H. H., Zhang, C., & Glick, J. D. (1999). Interannual variation of the Madden–Julian oscillation during austral summer. Journal of Climate, 12(8), 2538–2550.
Holton, J. R., & Dmowska, R. (1989). El Niño, La Niña, and the southern oscillation (Vol. 46). Academic press.
Hong, C. C., Li, T., & Kug, J. S. (2008). Asymmetry of the Indian Ocean dipole. Part I: observational analysis. Journal of climate, 21(18), 4834–4848.
Hong, C., M. Lee, H. Hsu, and W. Tseng (2018), Distinct Influences of the ENSO-Like and PMM-Like SST Anomalies on the Mean TC Genesis Location in the Western North Pacific: The 2015 Summer as an Extreme Example, Journal of Climate, 31(8), 3049–3059, doi:10.1175/jcli-d-17-0504.1.
Hsu, H. H., Hung, C. H., Lo, A. K., Wu, C. C., & Hung, C. W. (2008). Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. Journal of Climate, 21(12), 2960–2975.
Hu, S., & Fedorov, A. V. (2016). Exceptionally strong easterly wind burst stalling El Niño of 2014. Proceedings of the National Academy of Sciences, 113(8), 2005–2010.
Jin, F. F., & An, S. I. (1999). Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophysical research letters, 26(19), 2989–2992.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., ... & Zhu, Y. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3), 437–472.
Ko, K. C., Hsu, H. H., & Chou, C. (2012). Propagation and maintenance mechanism of the TC/submonthly wave pattern and TC feedback in the western North Pacific. Journal of Climate, 25(24), 8591–8610.
Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., ... & Xia, K. (2013). The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Advances in Atmospheric Sciences, 30(3), 543–560.
Li, T. (1997). Phase transition of the El Niño–Southern Oscillation: A stationary SST mode. Journal of the atmospheric sciences, 54(24), 2872–2887.
Li, T., & Philander, S. G. H. (1996). On the annual cycle of the eastern equatorial Pacific. Journal of Climate, 9(12), 2986–2998.
Li, T., Zhang, Y., Lu, E., & Wang, D. (2002). Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophysical research letters, 29(23), 25–1.
Luo, J. J., Masson, S., Behera, S., Shingu, S., & Yamagata, T. (2005). Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. Journal of climate, 18(21), 4474–4497.
Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the atmospheric sciences, 28(5), 702–708.
McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. science, 314(5806), 1740–1745.
Menkes, C. E., Lengaigne, M., Vialard, J., Puy, M., Marchesiello, P., Cravatte, S., & Cambon, G. (2014). About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophysical research letters, 41(18), 6476–6483.
Min, Q., Su, J., Zhang, R., & Rong, X. (2015). What hindered the El Niño pattern in 2014?. Geophysical research letters, 42(16), 6762–6770.
Neelin, J. D., Jin, F. F., & Syu, H. H. (2000). Variations in ENSO phase locking. Journal of Climate, 13(14), 2570–2590.
Persson, A. O. (2006). Hadley’s principle: understanding and misunderstanding the trade winds. History of Meteorology, 3, 17–42.
Rasmusson, E. M., & Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110(5), 354–384.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108(D14).
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. (2007). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20(22), 5473–5496.
Ropelewski, C. F., & Halpert, M. S. (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Monthly Weather Review, 114(12), 2352–2362.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., ... & Liu, H. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058.
Slingo, J. M., Rowell, D. P., Sperber, K. R., & Nortley, F. (1999). On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Niño. Quarterly Journal of the Royal Meteorological Society, 125(554), 583–609.
Smith, T. M., Reynolds, R. W., Peterson, T. C., & Lawrimore, J. (2008). Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). Journal of Climate, 21(10), 2283–2296.
Stuecker, M. F. (2018). Revisiting the Pacific meridional mode. Scientific reports, 8(1), 3216.
Su, J., Xiang, B., Wang, B., & Li, T. (2014). Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophysical Research Letters, 41(24), 9058–9064.
Sullivan, A., Luo, J. J., Hirst, A. C., Bi, D., Cai, W., & He, J. (2016). Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Scientific reports, 6, 38540.
Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO–monsoon system. Journal of climate, 12(8), 2679–2690.
Waliser, D. E., & Gautier, C. (1993). A satellite-derived climatology of the ITCZ. Journal of climate, 6(11), 2162–2174.
Wang, B., & Fan, Z. (1999). Choice of South Asian summer monsoon indices. Bulletin of the American Meteorological Society, 80(4), 629–638.
Wang, B., & Zhang, Q. (2002). Pacific–east Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Nino development. Journal of climate, 15(22), 3252–3265.
Wang, L., Li, T., & Zhou, T. (2012). Intraseasonal SST variability and air–sea interaction over the Kuroshio Extension region during boreal summer. Journal of Climate, 25(5), 1619–1634.
Wang, L., Li, T., & Zhou, T. (2015). Effect of high-frequency wind on intraseasonal SST variabilities over the mid-latitude North Pacific region during boreal summer. Climate dynamics, 45(9–10), 2607–2617.
Wu, Y., L. Chen, C. Hong, T. Li, C. Chen, and L. Wang (2018), Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development, Climate Dynamics, 50(5–6), 1625–1638, doi:10.1007/s00382-017-3710-1.
Wu, Y., C. Hong, and C. Chen (2018), Distinct Effects of the Two Strong El Niño Events in 2015-2016 and 1997-1998 on the Western North Pacific Monsoon and Tropical Cyclone Activity: Role of Subtropical Eastern North Pacific Warm SSTA, Journal of Geophysical Research: Oceans, 123(5), 3603–3618, doi:10.1002/2018jc013798.
Xie, S. P., & Philander, S. G. H. (1994). A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46(4), 340–350.
Yan, L., Yong-Qiang, Y., Bin, W., Li-Juan, L., & Pan-Xing, W. (2009). ENSO hindcast experiments using a coupled GCM. Atmospheric and Oceanic Science Letters, 2(1), 7–13.
Yan, L., Wang, P., Yu, Y., Li, L., & Wang, B. (2010). Potential predictability of sea surface temperature in a coupled ocean-atmosphere GCM. Advances in Atmospheric Sciences, 27(4), 921–936.
Yu, J., and S. Kim (2011), Relationships between Extratropical Sea Level Pressure Variations and the Central Pacific and Eastern Pacific Types of ENSO, Journal of Climate, 24(3), 708–720, doi:10.1175/2010jcli3688.
Yu, Y., Chen, L., & Zhang, Y. (2014). ENSO and PDO in two versions of FGOALS. In Flexible Global Ocean-Atmosphere-Land System Model (pp. 107–113). Springer, Berlin, Heidelberg.
Zhan, R., Wang, Y., & Liu, Q. (2017). Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016. Journal of Climate, 30(24), 9979–9997.
Zang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–1993. Journal of Climate, 10, 1004–1020.
Zhang, W., Vecchi, G. A., Murakami, H., Villarini, G., & Jia, L. (2016). The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. Journal of Climate, 29(1), 381–398.
Zhu, J., Kumar, A., Huang, B., Balmaseda, M. A., Hu, Z. Z., Marx, L., & Kinter III, J. L. (2016). The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Scientific reports, 6, 19677.
Zhu, J., & Shukla, J. (2013). The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. Journal of Climate, 26(15), 5689–5697.
Zhu, J., Huang, B., Zhang, R. H., Hu, Z. Z., Kumar, A., Balmaseda, M. A., ... & Kinter III, J. L. (2014). Salinity anomaly as a trigger for ENSO events. Scientific reports, 4, 6821.